winwin
Well-Known Member
Hạt Higgs, lực cơ bản thứ năm mới lạ ?
http://vatlyvietnam.org/vat-ly-nang-luong-cao/hat-higgs-luc-co-ban-thu-nam-moi-la.html
Hầu như đồng thời vào hè năm 1964, sáu nhà vật lý độc lập với nhau cùng đề xuất một cơ chế mang khối lượng cho vạn vật. Cơ chế BEH (Brout, Englert, Higgs, coi phụ chú 5) này là nền tảng của Mô Hình Chuẩn, một lý thuyết diễn tả nhất quán và chính xác ba lực cơ bản của Tự nhiên: điện từ, lực mạnh và lực yếu của hạt nhân nguyên tử. Cùng với lực hấp dẫn (diễn tả bởi thuyết Tương đối rộng) chúng hợp thành bốn lực cơ bản chi phối cách vận hành và cấu trúc của vạn vật. Để chứng tỏ cơ chế BEH không chỉ là một ý tưởng thuần lý thuyết mà trái lại có thể kiểm chứng bởi thực nghiệm, điều tối quan trọng trong khoa học, riêng P. Higgs đã đề xuất là phải hiện hữu một hạt cơ bản vô hướng (spin 0). S.Weinberg gọi hạt này là boson Higgs mà CERN vừa tìm thấy dấu vết rất khả tín ngày 04/07/2012.
Hiện tượng lịch sử này các nhà vật lý hồi hộp đón chờ từ năm 1984 khi Trung tâm Âu châu Nghiên cứu Hạt nhân Nguyên tử (CERN) quyết định xây dựng máy gia tốc khổng lồ LHC1 có năng lượng cao nhất thế giới để săn tìm hạt Higgs. Nó mở đầu một chương mới trong vật lý vì đây là lần đầu con người khám phá ra một lực mới lạ, lực mang khối lượng cho vật chất, coi như lực cơ bản thứ năm của Tự nhiên, bên cạnh bốn lực cơ bản quen thuộc nói ở trên. Nó gợi ra cách tiếp cận mới về khối lượng của vật chất, khác với quan điểm cố hữu coi khối lượng (hay năng lượng) là cái gì cho trước bởi Tự nhiên mà không ai hiểu nguồn gốc sâu xa. Có thể khối lượng của vật chất được tạo ra bởi sự tương tác của chúng với trường Higgs tràn đầy trong chân không của vũ trụ từ thủa nguyên thủy Big Bang. Khởi đầu tất cả đều không có khối lượng, do tương tác với trường Higgs mà vật chất mang khối lượng, nặng hay nhẹ tùy theo cường độ tương tác lớn hay nhỏ của chúng, càng tác động mạnh vật chất càng có khối lượng lớn.
Nguyên nhân nào thúc đẩy sáu nhà vật lý sáng tạo ra cơ chế BEH ? Khởi đầu là sự tìm hiểu tại sao hạt ánh sáng (photon γ) không khối lượng lại trở thành có khối lượng khi nó di chuyển trong các vật liệu siêu dẫn. Nguyên lý “Đối xứng Chuẩn” (local gauge symmetry), trụ cột chi phối toàn diện bốn định luật cơ bản nói ở trên, bó buộc photon phải có khối lượng bằng 0, điều phù hợp với nguyên lý bất định Heisenberg theo đó khối lượng của một vật tỷ lệ nghịch với tầm truyền của nó (phụ chú 6). Vì đối xứng chuẩn bị phá vỡ một cách tự phát (spontaneously broken) trong hiện tượng siêu dẫn khiến cho photon như mang một khối lượng. Vì có khối lượng nên nó chỉ có thể di chuyển trong một khoảng cách ngắn nhất định, khác với bản tính tự tại của sóng điện từ có thể truyền đi vô hạn. Bức tường ngăn chặn photon di chuyển trong vật liệu siêu dẫn chính là muôn ngàn cặp Cooper liên kết hai electron có spin đối nghịch và như vậy mang spin 0. Vì mang spin 0 nên các cặp này có thể hoà đồng như một ngưng tụ Bose-Einstein để vận hành như một dòng chảy của muôn ngàn điện tích và trở nên siêu dẫn.
Đối xứng chuẩn và sự phá vỡ tự phát của nó đóng vai trò chủ yếu của lực cơ bản thứ năm mà sự khám phá ra hạt Higgs là một bước ngoặt lịch sử.
1-Vài điều về Đối xứng
Trong tiến trình khám phá các định luật khoa học, nhiều nhà nghiên cứu lấy nguồn cảm hứng trong cái đẹp cân đối hài hoà của thiên nhiên để quan sát, tìm tòi, suy luận, sáng tạo. Cái đẹp đó có thể chủ quan trong nghệ thuật, văn chương, hội họa, âm nhạc, nhưng trong khoa học nó khách quan, định lượng và mang tên gọi đối xứng, với dụng cụ toán học là nhóm đối xứng2 để phân tích, xếp đặt thứ tự các trạng thái của hệ thống, tiên đoán những hậu quả.
Nguyên lý đối xứng đóng một vai trò quan trọng trong sự khám phá các định luật vận hành và cấu trúc của Thiên nhiên, đặc biệt của vật lý hạt cơ bản.
Đối xứng được định nghĩa theo nhà toán lý học Hermann Weyl (1885-1955) như sau: một định luật khoa học mang một tính đối xứng nếu nó biểu hiện không hề thay đổi khi ta tác động lên nó bởi một phép biến chuyển. Hình cầu là một minh hoạ rõ rệt nhất của một vật thể đối xứng: phép quay trong không gian ba chiều với bất kỳ một góc nào chung quanh tâm của hình cầu không làm nó thay đổi hình dạng. Nói cách khác, đường kính của hình cầu là một bất biến của phép quay chung quanh tâm của nó.
Có một định lý phổ quát và phong phú – khám phá bởi nhà toán học nữ Emmy Noether năm 1918 – theo đó khi một tính đối xứng chi phối một hệ thống vật lý nào đó thì phải có một định luật bảo toàn kèm theo, và như vậy phải có một đại lượng bất biến tương ứng.
Thí dụ định luật bảo toàn năng lượng là hệ quả tất yếu của tính đối xứng bởi sự chuyển đổi tịnh tiến của thời gian (một thí nghiệm thực hiện hôm nay, tháng trước hay tuần sau, trong cùng một điều kiện, cũng đều giống hệt nhau). Tính đối xứng bởi sự chuyển đổi tịnh tiến của không gian (thí nghiệm thực hiện trong cùng một điều kiện tại Hà Nội, Bình Nhưỡng hay La Habana đều như nhau) cho ta định luật bảo toàn xung lượng. Hai định luật bảo toàn này, theo thứ tự, diễn tả tính đồng nhất của thời gian (lúc nào cũng thế) và không gian (đâu cũng vậy). Ngoài ra còn có đối xứng bởi phép quay chung quanh một trục, nó đưa đến định luật bảo toàn xung lượng góc. Định luật này diễn tả tính đẳng hướng của không gian (bất kỳ chiều hướng nào cũng tương đương như nhau). Đồng nhất và Đẳng hướng là hai đối xứng cơ bản của không gian và thời gian.
Mỗi định luật cơ bản vật lý thường tự thân nó tuân thủ một phép đối xứng nào đó mà nhà nghiên cứu cần tìm kiếm ra. Thí dụ định luật điện từ, gói ghém trong bốn phương trình Maxwell, tuân theo phép đối xứng chuẩn (local gauge symmetry), mà hậu quả là sự bảo toàn điện tích. Điện tích chẳng bao giờ mất đi hay sinh ra cả, nó bất biến bởi phép biến chuyển chuẩn (gauge transformation). Danh từ chuẩn, cũng do Hermann Weyl đưa ra, hàm ý là không có một tiêu chuẩn, mẫu thước tuyệt đối nào trong cách tính toán đo lường giá trị nội tại của các đại lượng khoa học. Mét hay yard, lít hay gallon, đồng hay dollar đều tương đương cả, đó chỉ là ước lệ của con người. Bất biến bởi đối xứng chuẩn cũng như giá trị tự tại của một đại lượng, nó không phụ thuộc vào phương cách, đơn vị mà ta dùng để đo lường, tính toán.
Đối xứng chuẩn đóng một vai trò cực kỳ quan trọng trong tiến trình khám phá của vật lý, khởi đầu trong điện từ và sau đó lan rộng sang nhiều ngành như khoa học vật liệu, vật lý chất đông đặc ngưng tụ, vật lý hạt, vũ trụ thiên văn kèm theo những ứng dụng kỳ diệu trong công nghệ liên đới đến những ngành này3.
Vậy đối xứng chuẩn là gì ? Ai trong chúng ta khi làm quen với cơ học lượng tử đều biết rằng bình phương độ lớn của hàm số sóng của electron |Ψ(x)|2 cho ta xác suất trạng thái của nó. Ta thấy ngay phép biến chuyển chuẩn Ψ(x) → Ψ(x)eiα(x) với bất kỳ một hàm thực α(x) nào đều không làm thay đổi |Ψ(x)|2. Trong các hàm Ψ(x) và α(x), đối số x chỉ định tứ-vectơ xμ của không-thời gian bốn chiều. Cũng vậy phương trình Maxwell của photon – diễn tả bởi tứ-vectơ điện thế Aμ(x) – không hề thay đổi bởi phép biến chuyển chuẩn Aμ(x) → Aμ(x) + δα(x)/δxμ , ta thêm vào hay bớt đi một đạo hàm của bất kỳ hàm α(x) nào cũng không làm thay đổi phương trình Maxwell. Chính vì vậy mà đối xứng chuẩn chi phối toàn diện tương tác điện từ giữa electron với photon.
Cụ thể ta mường tượng đối xứng này như sau: điện thế của trái đất là một triệu volt và hai cực điện trong nhà là 1000000 volt và 1000220 volt, nhưng máy của chúng ta chạy với 220 volt không hề trục trặc mặc dầu hàng triệu volt điện thế của quả đất. Vì α(x) là bất kỳ hàm gì, nghĩa là có thể có muôn ngàn điện thế tùy tiện khác nhau ở mọi nơi trong hoàn vũ bao la, nhưng định luật chi phối sự vận hành của chúng phải được điều chỉnh ra sao để cho ta một trường điện từ duy nhất. Sự vận hành trong máy của chúng ta mang lên các thiên thể xa xăm không bị thay đổi bởi điện thế tuỳ tiện lớn hay nhỏ trên đó, điện tích của electron bao giờ cũng bất biến, ở đây hay ở đó, lực điện từ trong máy của chúng ta cũng là lực điện từ trên các thiên thể.
Đó là ý nghĩa vật lý của đối xứng chuẩn, nó tác động lên cả bốn lực cơ bản: hấp dẫn, mạnh, điện-từ, yếu.
Theo thuyết tương đối rộng (luật hấp dẫn), mọi người quan sát bất kể họ vận chuyển ra sao đều bình đẳng như nhau, người di chuyển với gia tốc cũng có thể nói họ đứng yên vì họ có thể thay thế lực mà họ bị áp đặt lên bằng lực hấp dẫn mà họ bị đặt vào. Sự tương đương giữa gia tốc và trọng lực có thể minh họa qua hình ảnh quen thuộc của phi hành gia lơ lửng đứng yên trong hỏa tiễn bay với gia tốc lớn. Nó phản ánh ý tưởng mà Einstein coi như mãn nguyện nhất trong đời ông: “một người rớt từ trên cao xuống không cảm thấy sức nặng của mình”. Theo nghĩa đó, lực hấp dẫn tuân thủ một đối xứng chuẩn, nó bảo đảm rằng mọi hệ quy chiếu đều tương đương với nhau.
http://vatlyvietnam.org/vat-ly-nang-luong-cao/hat-higgs-luc-co-ban-thu-nam-moi-la.html
Hầu như đồng thời vào hè năm 1964, sáu nhà vật lý độc lập với nhau cùng đề xuất một cơ chế mang khối lượng cho vạn vật. Cơ chế BEH (Brout, Englert, Higgs, coi phụ chú 5) này là nền tảng của Mô Hình Chuẩn, một lý thuyết diễn tả nhất quán và chính xác ba lực cơ bản của Tự nhiên: điện từ, lực mạnh và lực yếu của hạt nhân nguyên tử. Cùng với lực hấp dẫn (diễn tả bởi thuyết Tương đối rộng) chúng hợp thành bốn lực cơ bản chi phối cách vận hành và cấu trúc của vạn vật. Để chứng tỏ cơ chế BEH không chỉ là một ý tưởng thuần lý thuyết mà trái lại có thể kiểm chứng bởi thực nghiệm, điều tối quan trọng trong khoa học, riêng P. Higgs đã đề xuất là phải hiện hữu một hạt cơ bản vô hướng (spin 0). S.Weinberg gọi hạt này là boson Higgs mà CERN vừa tìm thấy dấu vết rất khả tín ngày 04/07/2012.
Hiện tượng lịch sử này các nhà vật lý hồi hộp đón chờ từ năm 1984 khi Trung tâm Âu châu Nghiên cứu Hạt nhân Nguyên tử (CERN) quyết định xây dựng máy gia tốc khổng lồ LHC1 có năng lượng cao nhất thế giới để săn tìm hạt Higgs. Nó mở đầu một chương mới trong vật lý vì đây là lần đầu con người khám phá ra một lực mới lạ, lực mang khối lượng cho vật chất, coi như lực cơ bản thứ năm của Tự nhiên, bên cạnh bốn lực cơ bản quen thuộc nói ở trên. Nó gợi ra cách tiếp cận mới về khối lượng của vật chất, khác với quan điểm cố hữu coi khối lượng (hay năng lượng) là cái gì cho trước bởi Tự nhiên mà không ai hiểu nguồn gốc sâu xa. Có thể khối lượng của vật chất được tạo ra bởi sự tương tác của chúng với trường Higgs tràn đầy trong chân không của vũ trụ từ thủa nguyên thủy Big Bang. Khởi đầu tất cả đều không có khối lượng, do tương tác với trường Higgs mà vật chất mang khối lượng, nặng hay nhẹ tùy theo cường độ tương tác lớn hay nhỏ của chúng, càng tác động mạnh vật chất càng có khối lượng lớn.
Nguyên nhân nào thúc đẩy sáu nhà vật lý sáng tạo ra cơ chế BEH ? Khởi đầu là sự tìm hiểu tại sao hạt ánh sáng (photon γ) không khối lượng lại trở thành có khối lượng khi nó di chuyển trong các vật liệu siêu dẫn. Nguyên lý “Đối xứng Chuẩn” (local gauge symmetry), trụ cột chi phối toàn diện bốn định luật cơ bản nói ở trên, bó buộc photon phải có khối lượng bằng 0, điều phù hợp với nguyên lý bất định Heisenberg theo đó khối lượng của một vật tỷ lệ nghịch với tầm truyền của nó (phụ chú 6). Vì đối xứng chuẩn bị phá vỡ một cách tự phát (spontaneously broken) trong hiện tượng siêu dẫn khiến cho photon như mang một khối lượng. Vì có khối lượng nên nó chỉ có thể di chuyển trong một khoảng cách ngắn nhất định, khác với bản tính tự tại của sóng điện từ có thể truyền đi vô hạn. Bức tường ngăn chặn photon di chuyển trong vật liệu siêu dẫn chính là muôn ngàn cặp Cooper liên kết hai electron có spin đối nghịch và như vậy mang spin 0. Vì mang spin 0 nên các cặp này có thể hoà đồng như một ngưng tụ Bose-Einstein để vận hành như một dòng chảy của muôn ngàn điện tích và trở nên siêu dẫn.
Đối xứng chuẩn và sự phá vỡ tự phát của nó đóng vai trò chủ yếu của lực cơ bản thứ năm mà sự khám phá ra hạt Higgs là một bước ngoặt lịch sử.
1-Vài điều về Đối xứng
Trong tiến trình khám phá các định luật khoa học, nhiều nhà nghiên cứu lấy nguồn cảm hứng trong cái đẹp cân đối hài hoà của thiên nhiên để quan sát, tìm tòi, suy luận, sáng tạo. Cái đẹp đó có thể chủ quan trong nghệ thuật, văn chương, hội họa, âm nhạc, nhưng trong khoa học nó khách quan, định lượng và mang tên gọi đối xứng, với dụng cụ toán học là nhóm đối xứng2 để phân tích, xếp đặt thứ tự các trạng thái của hệ thống, tiên đoán những hậu quả.
Nguyên lý đối xứng đóng một vai trò quan trọng trong sự khám phá các định luật vận hành và cấu trúc của Thiên nhiên, đặc biệt của vật lý hạt cơ bản.
Đối xứng được định nghĩa theo nhà toán lý học Hermann Weyl (1885-1955) như sau: một định luật khoa học mang một tính đối xứng nếu nó biểu hiện không hề thay đổi khi ta tác động lên nó bởi một phép biến chuyển. Hình cầu là một minh hoạ rõ rệt nhất của một vật thể đối xứng: phép quay trong không gian ba chiều với bất kỳ một góc nào chung quanh tâm của hình cầu không làm nó thay đổi hình dạng. Nói cách khác, đường kính của hình cầu là một bất biến của phép quay chung quanh tâm của nó.
Có một định lý phổ quát và phong phú – khám phá bởi nhà toán học nữ Emmy Noether năm 1918 – theo đó khi một tính đối xứng chi phối một hệ thống vật lý nào đó thì phải có một định luật bảo toàn kèm theo, và như vậy phải có một đại lượng bất biến tương ứng.
Thí dụ định luật bảo toàn năng lượng là hệ quả tất yếu của tính đối xứng bởi sự chuyển đổi tịnh tiến của thời gian (một thí nghiệm thực hiện hôm nay, tháng trước hay tuần sau, trong cùng một điều kiện, cũng đều giống hệt nhau). Tính đối xứng bởi sự chuyển đổi tịnh tiến của không gian (thí nghiệm thực hiện trong cùng một điều kiện tại Hà Nội, Bình Nhưỡng hay La Habana đều như nhau) cho ta định luật bảo toàn xung lượng. Hai định luật bảo toàn này, theo thứ tự, diễn tả tính đồng nhất của thời gian (lúc nào cũng thế) và không gian (đâu cũng vậy). Ngoài ra còn có đối xứng bởi phép quay chung quanh một trục, nó đưa đến định luật bảo toàn xung lượng góc. Định luật này diễn tả tính đẳng hướng của không gian (bất kỳ chiều hướng nào cũng tương đương như nhau). Đồng nhất và Đẳng hướng là hai đối xứng cơ bản của không gian và thời gian.
Mỗi định luật cơ bản vật lý thường tự thân nó tuân thủ một phép đối xứng nào đó mà nhà nghiên cứu cần tìm kiếm ra. Thí dụ định luật điện từ, gói ghém trong bốn phương trình Maxwell, tuân theo phép đối xứng chuẩn (local gauge symmetry), mà hậu quả là sự bảo toàn điện tích. Điện tích chẳng bao giờ mất đi hay sinh ra cả, nó bất biến bởi phép biến chuyển chuẩn (gauge transformation). Danh từ chuẩn, cũng do Hermann Weyl đưa ra, hàm ý là không có một tiêu chuẩn, mẫu thước tuyệt đối nào trong cách tính toán đo lường giá trị nội tại của các đại lượng khoa học. Mét hay yard, lít hay gallon, đồng hay dollar đều tương đương cả, đó chỉ là ước lệ của con người. Bất biến bởi đối xứng chuẩn cũng như giá trị tự tại của một đại lượng, nó không phụ thuộc vào phương cách, đơn vị mà ta dùng để đo lường, tính toán.
Đối xứng chuẩn đóng một vai trò cực kỳ quan trọng trong tiến trình khám phá của vật lý, khởi đầu trong điện từ và sau đó lan rộng sang nhiều ngành như khoa học vật liệu, vật lý chất đông đặc ngưng tụ, vật lý hạt, vũ trụ thiên văn kèm theo những ứng dụng kỳ diệu trong công nghệ liên đới đến những ngành này3.
Vậy đối xứng chuẩn là gì ? Ai trong chúng ta khi làm quen với cơ học lượng tử đều biết rằng bình phương độ lớn của hàm số sóng của electron |Ψ(x)|2 cho ta xác suất trạng thái của nó. Ta thấy ngay phép biến chuyển chuẩn Ψ(x) → Ψ(x)eiα(x) với bất kỳ một hàm thực α(x) nào đều không làm thay đổi |Ψ(x)|2. Trong các hàm Ψ(x) và α(x), đối số x chỉ định tứ-vectơ xμ của không-thời gian bốn chiều. Cũng vậy phương trình Maxwell của photon – diễn tả bởi tứ-vectơ điện thế Aμ(x) – không hề thay đổi bởi phép biến chuyển chuẩn Aμ(x) → Aμ(x) + δα(x)/δxμ , ta thêm vào hay bớt đi một đạo hàm của bất kỳ hàm α(x) nào cũng không làm thay đổi phương trình Maxwell. Chính vì vậy mà đối xứng chuẩn chi phối toàn diện tương tác điện từ giữa electron với photon.
Cụ thể ta mường tượng đối xứng này như sau: điện thế của trái đất là một triệu volt và hai cực điện trong nhà là 1000000 volt và 1000220 volt, nhưng máy của chúng ta chạy với 220 volt không hề trục trặc mặc dầu hàng triệu volt điện thế của quả đất. Vì α(x) là bất kỳ hàm gì, nghĩa là có thể có muôn ngàn điện thế tùy tiện khác nhau ở mọi nơi trong hoàn vũ bao la, nhưng định luật chi phối sự vận hành của chúng phải được điều chỉnh ra sao để cho ta một trường điện từ duy nhất. Sự vận hành trong máy của chúng ta mang lên các thiên thể xa xăm không bị thay đổi bởi điện thế tuỳ tiện lớn hay nhỏ trên đó, điện tích của electron bao giờ cũng bất biến, ở đây hay ở đó, lực điện từ trong máy của chúng ta cũng là lực điện từ trên các thiên thể.
Đó là ý nghĩa vật lý của đối xứng chuẩn, nó tác động lên cả bốn lực cơ bản: hấp dẫn, mạnh, điện-từ, yếu.
Theo thuyết tương đối rộng (luật hấp dẫn), mọi người quan sát bất kể họ vận chuyển ra sao đều bình đẳng như nhau, người di chuyển với gia tốc cũng có thể nói họ đứng yên vì họ có thể thay thế lực mà họ bị áp đặt lên bằng lực hấp dẫn mà họ bị đặt vào. Sự tương đương giữa gia tốc và trọng lực có thể minh họa qua hình ảnh quen thuộc của phi hành gia lơ lửng đứng yên trong hỏa tiễn bay với gia tốc lớn. Nó phản ánh ý tưởng mà Einstein coi như mãn nguyện nhất trong đời ông: “một người rớt từ trên cao xuống không cảm thấy sức nặng của mình”. Theo nghĩa đó, lực hấp dẫn tuân thủ một đối xứng chuẩn, nó bảo đảm rằng mọi hệ quy chiếu đều tương đương với nhau.