VC-Science Club

winwin

Well-Known Member
Hạt Higgs, lực cơ bản thứ năm mới lạ ?
http://vatlyvietnam.org/vat-ly-nang-luong-cao/hat-higgs-luc-co-ban-thu-nam-moi-la.html

Hầu như đồng thời vào hè năm 1964, sáu nhà vật lý độc lập với nhau cùng đề xuất một cơ chế mang khối lượng cho vạn vật. Cơ chế BEH (Brout, Englert, Higgs, coi phụ chú 5) này là nền tảng của Mô Hình Chuẩn, một lý thuyết diễn tả nhất quán và chính xác ba lực cơ bản của Tự nhiên: điện từ, lực mạnh và lực yếu của hạt nhân nguyên tử. Cùng với lực hấp dẫn (diễn tả bởi thuyết Tương đối rộng) chúng hợp thành bốn lực cơ bản chi phối cách vận hành và cấu trúc của vạn vật. Để chứng tỏ cơ chế BEH không chỉ là một ý tưởng thuần lý thuyết mà trái lại có thể kiểm chứng bởi thực nghiệm, điều tối quan trọng trong khoa học, riêng P. Higgs đã đề xuất là phải hiện hữu một hạt cơ bản vô hướng (spin 0). S.Weinberg gọi hạt này là boson Higgs mà CERN vừa tìm thấy dấu vết rất khả tín ngày 04/07/2012.

Hiện tượng lịch sử này các nhà vật lý hồi hộp đón chờ từ năm 1984 khi Trung tâm Âu châu Nghiên cứu Hạt nhân Nguyên tử (CERN) quyết định xây dựng máy gia tốc khổng lồ LHC1 có năng lượng cao nhất thế giới để săn tìm hạt Higgs. Nó mở đầu một chương mới trong vật lý vì đây là lần đầu con người khám phá ra một lực mới lạ, lực mang khối lượng cho vật chất, coi như lực cơ bản thứ năm của Tự nhiên, bên cạnh bốn lực cơ bản quen thuộc nói ở trên. Nó gợi ra cách tiếp cận mới về khối lượng của vật chất, khác với quan điểm cố hữu coi khối lượng (hay năng lượng) là cái gì cho trước bởi Tự nhiên mà không ai hiểu nguồn gốc sâu xa. Có thể khối lượng của vật chất được tạo ra bởi sự tương tác của chúng với trường Higgs tràn đầy trong chân không của vũ trụ từ thủa nguyên thủy Big Bang. Khởi đầu tất cả đều không có khối lượng, do tương tác với trường Higgs mà vật chất mang khối lượng, nặng hay nhẹ tùy theo cường độ tương tác lớn hay nhỏ của chúng, càng tác động mạnh vật chất càng có khối lượng lớn.

Nguyên nhân nào thúc đẩy sáu nhà vật lý sáng tạo ra cơ chế BEH ? Khởi đầu là sự tìm hiểu tại sao hạt ánh sáng (photon γ) không khối lượng lại trở thành có khối lượng khi nó di chuyển trong các vật liệu siêu dẫn. Nguyên lý “Đối xứng Chuẩn” (local gauge symmetry), trụ cột chi phối toàn diện bốn định luật cơ bản nói ở trên, bó buộc photon phải có khối lượng bằng 0, điều phù hợp với nguyên lý bất định Heisenberg theo đó khối lượng của một vật tỷ lệ nghịch với tầm truyền của nó (phụ chú 6). Vì đối xứng chuẩn bị phá vỡ một cách tự phát (spontaneously broken) trong hiện tượng siêu dẫn khiến cho photon như mang một khối lượng. Vì có khối lượng nên nó chỉ có thể di chuyển trong một khoảng cách ngắn nhất định, khác với bản tính tự tại của sóng điện từ có thể truyền đi vô hạn. Bức tường ngăn chặn photon di chuyển trong vật liệu siêu dẫn chính là muôn ngàn cặp Cooper liên kết hai electron có spin đối nghịch và như vậy mang spin 0. Vì mang spin 0 nên các cặp này có thể hoà đồng như một ngưng tụ Bose-Einstein để vận hành như một dòng chảy của muôn ngàn điện tích và trở nên siêu dẫn.

Đối xứng chuẩn và sự phá vỡ tự phát của nó đóng vai trò chủ yếu của lực cơ bản thứ năm mà sự khám phá ra hạt Higgs là một bước ngoặt lịch sử.

1-Vài điều về Đối xứng

Trong tiến trình khám phá các định luật khoa học, nhiều nhà nghiên cứu lấy nguồn cảm hứng trong cái đẹp cân đối hài hoà của thiên nhiên để quan sát, tìm tòi, suy luận, sáng tạo. Cái đẹp đó có thể chủ quan trong nghệ thuật, văn chương, hội họa, âm nhạc, nhưng trong khoa học nó khách quan, định lượng và mang tên gọi đối xứng, với dụng cụ toán học là nhóm đối xứng2 để phân tích, xếp đặt thứ tự các trạng thái của hệ thống, tiên đoán những hậu quả.

Nguyên lý đối xứng đóng một vai trò quan trọng trong sự khám phá các định luật vận hành và cấu trúc của Thiên nhiên, đặc biệt của vật lý hạt cơ bản.

Đối xứng được định nghĩa theo nhà toán lý học Hermann Weyl (1885-1955) như sau: một định luật khoa học mang một tính đối xứng nếu nó biểu hiện không hề thay đổi khi ta tác động lên nó bởi một phép biến chuyển. Hình cầu là một minh hoạ rõ rệt nhất của một vật thể đối xứng: phép quay trong không gian ba chiều với bất kỳ một góc nào chung quanh tâm của hình cầu không làm nó thay đổi hình dạng. Nói cách khác, đường kính của hình cầu là một bất biến của phép quay chung quanh tâm của nó.

Có một định lý phổ quát và phong phú – khám phá bởi nhà toán học nữ Emmy Noether năm 1918 – theo đó khi một tính đối xứng chi phối một hệ thống vật lý nào đó thì phải có một định luật bảo toàn kèm theo, và như vậy phải có một đại lượng bất biến tương ứng.

Thí dụ định luật bảo toàn năng lượng là hệ quả tất yếu của tính đối xứng bởi sự chuyển đổi tịnh tiến của thời gian (một thí nghiệm thực hiện hôm nay, tháng trước hay tuần sau, trong cùng một điều kiện, cũng đều giống hệt nhau). Tính đối xứng bởi sự chuyển đổi tịnh tiến của không gian (thí nghiệm thực hiện trong cùng một điều kiện tại Hà Nội, Bình Nhưỡng hay La Habana đều như nhau) cho ta định luật bảo toàn xung lượng. Hai định luật bảo toàn này, theo thứ tự, diễn tả tính đồng nhất của thời gian (lúc nào cũng thế) và không gian (đâu cũng vậy). Ngoài ra còn có đối xứng bởi phép quay chung quanh một trục, nó đưa đến định luật bảo toàn xung lượng góc. Định luật này diễn tả tính đẳng hướng của không gian (bất kỳ chiều hướng nào cũng tương đương như nhau). Đồng nhất và Đẳng hướng là hai đối xứng cơ bản của không gian và thời gian.

Mỗi định luật cơ bản vật lý thường tự thân nó tuân thủ một phép đối xứng nào đó mà nhà nghiên cứu cần tìm kiếm ra. Thí dụ định luật điện từ, gói ghém trong bốn phương trình Maxwell, tuân theo phép đối xứng chuẩn (local gauge symmetry), mà hậu quả là sự bảo toàn điện tích. Điện tích chẳng bao giờ mất đi hay sinh ra cả, nó bất biến bởi phép biến chuyển chuẩn (gauge transformation). Danh từ chuẩn, cũng do Hermann Weyl đưa ra, hàm ý là không có một tiêu chuẩn, mẫu thước tuyệt đối nào trong cách tính toán đo lường giá trị nội tại của các đại lượng khoa học. Mét hay yard, lít hay gallon, đồng hay dollar đều tương đương cả, đó chỉ là ước lệ của con người. Bất biến bởi đối xứng chuẩn cũng như giá trị tự tại của một đại lượng, nó không phụ thuộc vào phương cách, đơn vị mà ta dùng để đo lường, tính toán.

Đối xứng chuẩn đóng một vai trò cực kỳ quan trọng trong tiến trình khám phá của vật lý, khởi đầu trong điện từ và sau đó lan rộng sang nhiều ngành như khoa học vật liệu, vật lý chất đông đặc ngưng tụ, vật lý hạt, vũ trụ thiên văn kèm theo những ứng dụng kỳ diệu trong công nghệ liên đới đến những ngành này3.

Vậy đối xứng chuẩn là gì ? Ai trong chúng ta khi làm quen với cơ học lượng tử đều biết rằng bình phương độ lớn của hàm số sóng của electron |Ψ(x)|2 cho ta xác suất trạng thái của nó. Ta thấy ngay phép biến chuyển chuẩn Ψ(x) → Ψ(x)eiα(x) với bất kỳ một hàm thực α(x) nào đều không làm thay đổi |Ψ(x)|2. Trong các hàm Ψ(x) và α(x), đối số x chỉ định tứ-vectơ xμ của không-thời gian bốn chiều. Cũng vậy phương trình Maxwell của photon – diễn tả bởi tứ-vectơ điện thế Aμ(x) – không hề thay đổi bởi phép biến chuyển chuẩn Aμ(x) → Aμ(x) + δα(x)/δxμ , ta thêm vào hay bớt đi một đạo hàm của bất kỳ hàm α(x) nào cũng không làm thay đổi phương trình Maxwell. Chính vì vậy mà đối xứng chuẩn chi phối toàn diện tương tác điện từ giữa electron với photon.

Cụ thể ta mường tượng đối xứng này như sau: điện thế của trái đất là một triệu volt và hai cực điện trong nhà là 1000000 volt và 1000220 volt, nhưng máy của chúng ta chạy với 220 volt không hề trục trặc mặc dầu hàng triệu volt điện thế của quả đất. Vì α(x) là bất kỳ hàm gì, nghĩa là có thể có muôn ngàn điện thế tùy tiện khác nhau ở mọi nơi trong hoàn vũ bao la, nhưng định luật chi phối sự vận hành của chúng phải được điều chỉnh ra sao để cho ta một trường điện từ duy nhất. Sự vận hành trong máy của chúng ta mang lên các thiên thể xa xăm không bị thay đổi bởi điện thế tuỳ tiện lớn hay nhỏ trên đó, điện tích của electron bao giờ cũng bất biến, ở đây hay ở đó, lực điện từ trong máy của chúng ta cũng là lực điện từ trên các thiên thể.

Đó là ý nghĩa vật lý của đối xứng chuẩn, nó tác động lên cả bốn lực cơ bản: hấp dẫn, mạnh, điện-từ, yếu.

Theo thuyết tương đối rộng (luật hấp dẫn), mọi người quan sát bất kể họ vận chuyển ra sao đều bình đẳng như nhau, người di chuyển với gia tốc cũng có thể nói họ đứng yên vì họ có thể thay thế lực mà họ bị áp đặt lên bằng lực hấp dẫn mà họ bị đặt vào. Sự tương đương giữa gia tốc và trọng lực có thể minh họa qua hình ảnh quen thuộc của phi hành gia lơ lửng đứng yên trong hỏa tiễn bay với gia tốc lớn. Nó phản ánh ý tưởng mà Einstein coi như mãn nguyện nhất trong đời ông: “một người rớt từ trên cao xuống không cảm thấy sức nặng của mình”. Theo nghĩa đó, lực hấp dẫn tuân thủ một đối xứng chuẩn, nó bảo đảm rằng mọi hệ quy chiếu đều tương đương với nhau.
 
(tiếp) Đối xứng chuẩn khẳng định tính bất biến của định luật điện từ trong những phép chuyển dời của điện tích đi từ không-thời điểm này đến không-thời điểm kia.

Cũng thế, đối với lực mạnh của hạt nhân nguyên tử thì hai hạt proton và neutron đều hoàn toàn bình đẳng như nhau, định luật tương tác mạnh không thay đổi bởi sự hoán chuyển proton ↔ neutron ở bất kỳ không-thời điểm nào.

Và đây là điểm cốt lõi: Sự đối xứng bình đẳng của mọi hệ quy chiếu đòi hỏi phải có luật hấp dẫn, hơn nữa nó còn xác định được luật hấp dẫn là gì dưới dạng toán học qua phương trình Einstein của thuyết tương đối rộng.

Cũng vậy, lực mạnh của hạt nhân nguyên tử không phụ thuộc vào sự hoán chuyển proton ↔ neutron. Tính đối xứng giữa proton ↔ neutron đòi hỏi tương tác mạnh phải được diễn tả dưới dạng của một phương trình cụ thể. C. N.Yang cùng đồng nghiệp trẻ R. Mills bàn luận về sự bất biến của lực mạnh dưới sự hoán chuyển proton ↔ neutron (nhóm đối xứng SU(2) của toán học) và tìm ra phương trình tương tác đáp ứng đối xứng chuẩn này. Công trình phong phú đó mang tên lý thuyết chuẩn Yang-Mills.

Sắc động lực học lượng tử (Quantum Chromodynamics, QCD) là định luật đáp ứng phép đối xứng sắc tích (color charge) của quark, nghĩa là bất kỳ các dịch chuyển ra sao trong không-thời gian của sắc tích đều không làm thay đổi tương tác của quark.
 
Last edited by a moderator:
(tiếp) Một hậu quả độc đáo của lý thuyết chuẩn Yang-Mills nói chung (và của QCD nói riêng), là các boson chuẩn phải trực tiếp tác động giữa chúng với nhau, khác hẳn với photon (boson chuẩn của điện từ) không có tương tác trực tiếp này. Chính sự tác động trực tiếp với nhau giữa các gluon (boson chuẩn của QCD) là gốc nguồn của tính chất "tự do tiệm tiến" theo đó lực mạnh giảm đi khi quark xích lại gần nhau và do đó tăng lên khi chúng bị tách xa nhau. Càng đẩy chúng ra xa để tách rời chúng thì lực gắn kết chúng lại càng mạnh hơn lên để kéo giữ chúng lại, điều trái ngược với lực Coulomb của điện từ bị giảm đi theo bình phương khoảng cách của hai điện tích. Quark mãi mãi bị cầm tù, chúng không sao thoát khỏi ra ngoài hadron để lộ mặt, và tính chất "tự do tiệm tiến” vinh tặng D. J. Gross, H. D. Politzer và F. Wilczek giải Nobel 2004.

Đặc điểm cần nhấn mạnh của đối xứng chuẩn là nó đòi hỏi các boson chuẩn có spin 1 (gauge boson) – làm trung gian sứ giả cho những fermion (như quark và lepton) tương tác với nhau – phải không có khối lượng. Photon hay gluon là thí dụ của boson chuẩn không có khối lượng.

2- Hạt cơ bản và Mô Hình Chuẩn

Khi con người xây dựng được một hệ thống nghiêm túc của những ý tưởng và phương pháp suy luận chính xác, nhất quán, cũng như những ngôn từ tương xứng để diễn tả và giải thích thế giới bên ngoài, thì theo nghĩa đó họ đã tạo dựng nên một thực tại thiên nhiên mà hạt cơ bản và vũ trụ là thí dụ điển hình về cái mà chúng ta hiểu biết về hai thái cực vô cùng nhỏ cũng như vô cùng lớn đó.

Hạt cơ bản (viên gạch vi mô tận cùng của vật chất, không sao chia cắt nổi) – mà con người tạo dựng nên – không phải là duy nhất, sự hiểu biết về chúng phát triển tùy theo thời đại và các nền văn hóa.

Hết rồi thời xa xưa khi kim, mộc, thủy, hỏa, thổ là năm thành phần sơ đẳng cốt lõi của vật chất, chỉ mới đầu thế kỷ 20 thôi mà phân tử hãy còn được coi là hạt sơ cấp tận cùng của vật chất. Ngày nay chúng ta biết phân tử là tập hợp của nhiều nguyên tử khác nhau liên kết bởi electron ngoại vi, mà mỗi nguyên tử lại là hạt nhân của nó thu hút những electron dao động chung quanh bởi lực điện từ mà photon là sứ giả nối kết, rồi hạt nhân nguyên tử cũng lại do proton cùng neutron gắn với nhau mà thành, sau hết proton và neutron cũng chỉ là trạng thái liên kết của các quark u và d qua trao đổi gluon của lực hạt nhân mạnh.

Cứ thế, như những con mẫu búp bê Nga liên hồi chứa đựng nhau, chuỗi dài của những hạt cơ bản đi từ phân tử đến quark là cả một quá trình sáng tạo, khám phá bền bỉ khi lên lúc xuống, lý thuyết cùng thực nghiệm chặt chẽ đan xen.

Theo sự hiểu biết hiện đại thì hạt cơ bản là quark và lepton, chúng là những viên gạch sơ đẳng tận cùng để cấu tạo nên vật chất bất động hay sinh động ít nhất là trên Trái đất, hệ Mặt trời.

Hiện tình của các hạt cơ bản được tóm tắt trong sơ đồ Hình 1, chúng gồm có hai phần: mười hai hạt có spin4 ½ như quark và lepton cùng bốn boson chuẩn có spin 1 như photon γ, gluon g, hai boson Z, W của lực yếu.

Có sáu loại quark mang ký hiệu u (up), d (down), s (strange), c (charm), t (top), b (bottom), sáu loại lepton bao gồm ba hạt e– (electron), μ– (muon), τ – (tauon) mang điện tích âm -e, và ba hạt neutrino νe, νμ, ντ trung hòa điện tích, theo thứ tự ba hạt neutrino này bao giờ cũng sánh đôi từng cặp với ba hạt electron, muon, tauon trong tương tác.

Sự cân bằng trong thiên nhiên về số lượng: sáu loại quark và sáu loại lepton không tình cờ mà là hậu quả sâu sắc (nhưng khá kỹ thuật chuyên môn) của đối xứng chuẩn trong lý thuyết trường lượng tử.

Chỉ có bốn lực cơ bản chi phối các tương tác của vật chất, đó là hấp dẫn, điện từ và lực hạt nhân mạnh, yếu. Ba tương tác "phi hấp dẫn": mạnh, yếu, điện từ đã thành công trong việc được lượng tử hóa và tái chuẩn hóa (điều mà luật hấp dẫn của thuyết tương đối rộng không hay chưa làm được), chính vì vậy mà ba lực này diễn giải nhất quán và chính xác cách vận hành, tác động của các hạt vi mô cơ bản.

Lực mạnh gắn kết quark trong hạt nhân nguyên tử và làm cho vật chất vững bền nói chung.

Lực điện từ diễn tả electron tương tác với proton trong hạt nhân nguyên tử để tạo nên các nguyên tử và phân tử của các hóa chất trong bảng tuần hoàn Mendeleïev cũng như của các tế bào và gen sinh vật.

Lực yếu chi phối toàn diện sự vận hành của neutrino, làm cho một số hạt nhân nguyên tử phân rã và phát tán neutrino.

Tương tác mạnh (strong interaction) của các quark trao đổi gluon g giữa chúng được gọi là Sắc động lực học lượng tử (Quantum Chromodynamics hay QCD), thuật ngữ vay mượn của Ðiện động lực học lượng tử (Quantum Electrodynamics hay QED) diễn tả tương tác điện từ của các hạt mang điện tích trao đổi photon  giữa chúng.

Hai danh từ sắc và điện để chỉ định hai tính chất lượng tử riêng biệt, sắc tích (color charge) của quark và điện tích (electric charge) của lepton e –, μ –, τ –. Cũng như thuật ngữ quark, thuật ngữ sắc dùng ở đây chỉ là trò chơi chữ của các nhà vật lý hạt cơ bản, nó chẳng có chút liên hệ gì tới màu sắc xanh, đỏ của ngôn ngữ hàng ngày. Theo một định lý sâu sắc liên kết spin với phép thống kê của lý thuyết trường lượng tử, vì có spin ½ nên khi 3 quark kết hợp với nhau trong trạng thái căn bản để tạo thành proton thì quark phải mang 3 đặc tính lượng tử (mà ta gọi là 3 sắc tích) để tuân thủ phép thống kê Fermi-Dirac, theo đó các fermion (spin ½) không thể cùng ở chung một trạng thái (spin, năng lượng...), trái ngược với những boson (spin 0, 1) tha hồ hoà đồng trong cùng một trạng thái.

Quark khác lepton ở chỗ là ngoài sắc tích ra, chúng cũng mang điện tích, nhưng điện tích của chúng không phải là con số nguyên  e như electron mà là + (⅔)e cho ba quark u, c, t và -(⅓)e cho ba quark d, s, b.

Chính vì quark có cả sắc tích và điện tích nên chúng bị chi phối bởi cả ba lực: điện từ, hạt nhân mạnh, hạt nhân yếu. Còn electron, muon, tauon vì mang điện tích nên bị tác động bởi hai lực: điện từ và yếu. Neutrino trung hòa điện tích nên chỉ bị chi phối duy nhất bởi lực yếu. Thuật ngữ yếu, thoạt nghe tưởng như nhỏ yếu ít tác động, nhưng thực ra nó chủ chốt điều hành sự tổng hợp nhiệt hạch trong các thiên thể, phát tán ra năng lượng cực kỳ cao mang ánh sáng cho bầu trời ban đêm cũng như phóng ra hàng muôn tỷ hạt neutrino từng giây đang xuyên qua da thịt chúng ta.

Quark cũng như lepton tương tác với nhau qua sự trao đổi các boson chuẩn. Boson chuẩn của lực mạnh là gluon g, của lực điện từ là photon γ, của lực yếu là hai boson W, Z, chúng có vai trò làm trung gian nối kết và truyền tải thông tin để cho các viên gạch cơ bản quark và lepton tương tác với nhau.

Điều quan trọng đã nhấn mạnh ở cuối phần 1 là các boson chuẩn phải không có khối lượng, đó là trường hợp của photon và gluon, nhưng hai boson chuẩn W, Z của lực yếu lại quá nặng.

Câu hỏi là W, Z không thể là boson chuẩn ? như thế lực yếu không tuân thủ đối xứng chuẩn, một nguyên lý nền tảng vững chắc, nhất quán để tính toán, tiên đoán mọi hiện tượng?

Câu trả lời là có, giải đáp bởi cơ chế BEH (Brout, Englert, Higgs). Mô phỏng một hiện tượng khá phổ quát trong thiên nhiên gọi là sự Phá vỡ Tự phát tính Đối xứng (Spontaneous Breaking of Symmetry, SBS) mà người tiên phong mở đường là Y. Nambu, giải Nobel 2008, P. Higgs5 và đồng nghiệp sáng tạo ra cơ chế BEH mang khối lượng cho W, Z và cả cho quark lẫn lepton, nói chung cho vật chất, và hơn nữa chứng minh là cơ chế này vẫn tuân thủ đối xứng chuẩn.
 
Last edited by a moderator:
(tiếp) Ngoài ra, hai định luật cơ bản điện từ và hạt nhân yếu tuy có cường độ tương tác hiệu dụng quá khác biệt nhưng vì nhận thấy chúng có nhiều đặc tính chung nên S. Glashow, A.Salam và S. Weinberg (giải Nobel 1979) sử dụng cơ chế BEH để kết hợp lực điện từ và lực hạt nhân yếu trong một tương tác duy nhất mà Salam đặt tên là điện-yếu (electroweak). Thành tựu tuyệt vời này gọi là Mô Hình Chuẩn (Standard Model) đã mang lại khoảng ba chục giải Nobel trong ba chục năm gần đây. Mô Hình Chuẩn tiên đoán nhiều hiện tượng và hạt mới lạ cũng như tính chất của chúng mà sau đó đều được thực nghiệm kiểm chứng với độ chính xác đáng kinh ngạc. Hãy tạm kể hạt Ω–, dòng trung tính của lực hạt nhân yếu, các quark charm, top, bottom, hai boson chuẩn W, Z, mới lạ hồi hộp nhất là hạt cơ bản vô hướng Higgs vừa phát hiện.

clip_image002.jpg

Hình1: Sơ đồ các hạt cơ bản trong Mô Hình Chuẩn

Ở trung tâm của Hình1, duy nhất boson Higgs mang màu xám nhạt như để nhắc nhở là hạt này tuy là nền tảng lý thuyết của Mô hình chuẩn nhưng lại chưa được thực nghiệm khẳng định, khác với màu hồng, xanh, tím của quark, lepton, boson chuẩn (Z, W, γ, g) đã được thực nghiệm xác nhận là hiện hữu. Rất có thể kể từ ngày mồng 4 tháng 7 năm 2012, màu xám của hạt Higgs sẽ rực rỡ ánh vàng vì hai nhóm thực nghiệm ATLAS và CMS ở CERN vừa tìm ra dấu vết nó trong máy gia tốc LHC.

3- Sự phá vỡ tự phát của tính đối xứng

Ta cần phân biệt hai điều quan trọng khi bàn luận về tính đối xứng: một là định luật vật lý diễn tả bởi phương trình, hai là trạng thái của hệ thống vật lý diễn tả bởi nghiệm số của phương trình trên. Sự phá vỡ tự phát của tính đối xứng hàm nghĩa là định luật (hay phương trình) cơ bản mang một phép đối xứng nào đó, trong khi nghiệm số của phương trình ấy lại không có cái đối xứng nguyên thủy, tính đối xứng của hệ thống bị biến đổi và thu hẹp lại nhưng không mất đi.

Hãy lấy thí dụ cụ thể về định luật vạn vật hấp dẫn cổ điển Newton áp dụng vào hệ thống Mặt trời và Trái đất để minh hoạ. Định luật hấp dẫn tuân thủ phép đối xứng quay trong không gian ba chiều với bất kỳ một góc nào chung quanh Mặt trời, luật đó bảo cho ta là quỹ đạo hình bầu dục của Trái đất có thể nằm trong bất kỳ một mặt phẳng xích đạo nào của quả cầu có tâm là Mặt trời. Nhưng hệ thống Mặt trời và Trái đất, nghĩa là nghiệm số của phương trình hấp dẫn, chỉ chọn một quỹ đạo duy nhất trong muôn vàn quỹ đạo có thể.

Định luật thì có đối xứng quay trong không gian ba chiều của hình cầu, trong khi trạng thái thì chỉ có đối xứng quay bị thu hẹp lại trong không gian hai chiều của mặt phẳng. Nằm trên quỹ đạo phẳng đó ta có thể nhầm tưởng là tính đối xứng quay nói trên bị phá vỡ, nhưng thực ra không thế, nó chỉ bị che khuất trong mặt phẳng.

Tìm ra phương trình là một chuyện, nhưng giải phương trình để có nghiệm số thỏa mãn điều kiện ban đầu nào đó lại là một chuyện khác. Ở đây ta giới hạn điều kiện ban đầu là năng lượng cực tiểu và nghiệm số tương ứng gọi là trạng thái căn bản hay chân không. Do vật chất (và năng lượng) được đặt vào chân không nên mọi sự trở nên đa dạng, phức tạp trong vũ trụ. Vì được coi là trạng thái đối xứng hoàn hảo nhất, nó bất biến bởi mọi chuyển đổi và do đó ta có thể nghĩ rằng chỉ có duy nhất một chân không (nơi vật chất vắng mặt). Nhưng có nhiều trường hợp không phải như vậy, có thể có muôn vàn trạng thái căn bản tương đương nhau, chẳng sao phân biệt, ta phải chọn cụ thể một trạng thái nhất định nào đó để xác định chân không. Tính đối xứng không bị phá vỡ trong toàn thể, nhưng về cục bộ thì nó bị che khuất trong chân không, đó là SBS minh họa bởi Hình 2.

07.JPG

Hình 2: Minh họa hiện tượng SBS: Thế giới hoàn toàn đối xứng chung quanh trục thẳng đứng, khi cậu nhỏ nhìn từ đỉnh cao chót (nhưng bấp bênh) của nón. Sàn dưới (trạng thái căn bản) vững chắc nhưng nghiêng xa trục thẳng đứng, đối xứng vẫn còn nhưng chỉ cục bộ đâu đó trong vìa nón thôi.

Hiện tượng SBS khá phổ biến trong vật lý mà vật liệu sắt-từ (kim loại sắt hay kền) là một thí dụ. Định luật cơ bản chi phối chất sắt-từ thì hoàn toàn đối xứng trong sự phân phối spin (coi như những la bàn nhỏ xíu) của các nguyên tử kền. Spin song song của chúng không có một chiều hướng nào giữ ưu thế trong toàn thể không gian ba chiều. Nhưng trong một thỏi nam châm của vật liệu sắt-từ, nghĩa là trong trạng thái căn bản của các nguyên tử kền, thì chiều spin song song của các nguyên tử này lại chỉ có một chiều nhất định bắc nam thôi, vậy trạng thái đó chỉ còn có một đối xứng thu hẹp trong mặt phẳng hai chiều.

Cũng vậy, siêu dẫn điện-từ minh họa hiện tượng SBS. Tính siêu dẫn của một số vật liệu ở nhiệt độ thấp là một đặc trưng của vật lý lượng tử, nó không có điện trở, vì thế nó trục xuất bất kỳ một điện trường lớn nhỏ ở ngoài áp đặt vào nó. Hơn nữa, để gần vật liệu siêu dẫn thì thỏi nam châm bị đẩy ra ngoài, từ trường bị trục xuất ra khỏi vật liệu siêu dẫn, đó là hiệu ứng Meissner- Ochsenfeld. Hiệu ứng này có thể là cội nguồn cho xe lửa trong tương lai được nâng lên trên đường ray, không bị lực ma sát nên xe lửa chạy nhanh (phụ chú 3e). Như vậy vật liệu siêu dẫn ngăn chặn tầm truyền của trường điện từ, nó là một hệ thống trong đó photon chỉ có thể tác động trong một khoảng cách ngắn, khác với bản chất tự tại của sóng điện từ có thể truyền đi vô hạn. Khi chuyển động trong vật liệu siêu dẫn thì photon, boson chuẩn của điện từ, bị cản trở bởi một bức tường chắn và như vậy photon tác động giống như mang một khối lượng6, mặc dầu phương trình điện từ Maxwell của nó vẫn tuân theo đối xứng chuẩn.

Bức tường chắn đó trong lý thuyết siêu dẫn của J. Bardeen7, L. N. Cooper và J. R. Schrieffer (BCS), giải Nobel 1972, là trạng thái căn bản của muôn ngàn cặp Cooper, cặp liên kết hai electron có spin đối nghịch và như vậy cặp này mang spin 0. Mỗi cặp Cooper mang điện tích -2e nhưng vì có spin 0 nên những cặp này có thể hoà đồng chung sống tựa như một đông tụ Bose-Einstein. Mỗi electron thì cô đơn8 và có cá tính mạnh mẽ, nhưng kỳ lạ thay ở một hoàn cảnh đặc biệt nào đó (nhiệt độ thấp) chúng lại dễ kết cặp với nhau, mỗi cặp tuy mảnh mai nhưng khi tụ họp đông đảo lại hòa đồng để vận hành như một dòng chảy thuần khiết của muôn ngàn điện tích và trở nên siêu dẫn.

Mặc dù photon có khối lượng khác 0, đối xứng chuẩn trong siêu dẫn điện từ không hề bị phá vỡ, nó chỉ bị che khuất đi bởi các cặp Cooper ở trạng thái căn bản, hiện tượng siêu dẫn là một biểu hiện sự phá vỡ tự phát của tính đối xứng chuẩn.

Sắt-từ, Siêu dẫn điện từ là hai thí dụ của SBS.

Hiện tượng SBS giúp ta hiểu tại sao boson chuẩn photon, trên nguyên tắc phải không có khối lượng, cuối cùng lại hóa ra có khối lượng trong hiện tượng siêu dẫn. Nó quả là một diệu pháp khiến cho hai boson chuẩn không khối lượng của lực yếu W, Z dựa vào để có khối lượng.

Nhưng mang khối lượng cho boson chuẩn chưa đủ, hãy còn một vướng mắc cuối phải vượt qua để cho cơ chế BEH được nhất quán và chính xác trên nguyên tắc. Thực thế, một định lý do J. Goldstone khám phá ra, theo đó thì hậu quả tất yếu của SBS là phải xuất hiện một hạt không khối lượng, không spin, được gọi là boson Nambu–Goldstone (NG). Ta có thể cảm nhận bằng trực giác định lý Goldstone khi quan sát cậu nhỏ trên vành nón. Cậu chẳng cần mất một chút năng lượng nào mà vẫn có thể di chuyển dễ dàng suốt quanh vành nón vì bất kỳ trạng thái căn bản nào trên vành nón cũng đều giống hệt nhau. Không cần một chút năng lượng nào để biến chuyển thì cũng tựa như dựa vào tác động của một hạt nhạt phèo, không khối lượng, không spin, đó chính là boson NG mà thực nghiệm có thể dễ dàng phát hiện, nếu có thật. Nhưng phiền toái thay, chẳng ai thấy bóng vía của boson NG hiện ra bao giờ cả, nó thực là một di sản cồng kềnh của SBS cần phải loại bỏ.

P. Higgs và đồng nghiệp đã thành công trong cách chứng minh được sự triệt tiêu này. Ta có thể tóm tắt nôm na là họ đạt hai đích với một mũi tên qua hình ảnh boson chuẩn khởi đầu nhẹ tênh (không khối lượng) đã nuốt chửng boson NG để cuối cùng trở thành W, Z nặng nề của lực yếu. Không những mang khối lượng cho W, Z, trường Higgs cũng mang khối lượng cho quark và lepton với đặc điểm là khối lượng của chúng tỷ lệ thuận với lực tương tác với boson Higgs. Quark top tác động mạnh mẽ nhất, neutrino hay electron lại quá hững hờ, còn photon thì hoàn toàn vô cảm với trường Higgs.
 
Last edited by a moderator:
(tiếp) Ý nghĩa của hiện tượng Higgs như lời tạm kết

Nếu hiện tượng vừa khám phá ở CERN được kiểm chứng sau này phù hợp với những đặc tính của boson Higgs (spin 0, những kiểu phân rã và sản xuất đúng như tiên đoán của Mô Hình Chuẩn) thì chúng ta đang chứng kiến một chương cũ sắp khép và một trang sử mới đang ló dạng trong vật lý. Khép chương cũ vì đã hoàn tất một đoạn đường dài là tất cả 17 hạt cơ bản trong Hình 1 đều được thực nghiệm khám phá hết cả, không còn gì thiếu sót. Điều này khẳng định hơn bao giờ hết sự vững chắc của Mô Hình Chuẩn, một lý thuyết nền tảng, một hệ hình mà từ đây mọi phát triển sau này đều phải dựa vào để phát triển xa hơn nữa.

Chương mới, vì cơ chế BEH thực sự lên ngôi, nó nhất quán, chính xác trên lý luận lại được thực nghiệm khẳng định. Cơ chế BEH này có thể ảnh hưởng sâu rộng đến nhiều ngành khác, nó được sinh ra qua một hôn phối đặc biệt giữa hai ngành xa lạ: vật lý chất đông đặc (siêu dẫn) và vật lý hạt (lực yếu của neutrino), cặp Cooper của hai electron là hình ảnh của boson Higgs. Cách tiếp cận quy giản của các nhà vật lý hạt qua sự tìm kiếm phương trình cơ bản, đã huởng thụ cách tiếp cận mở, hiệu dụng thiên về tìm kiếm xấp xỉ những nghiệm số của phương trình Maxwell đã biết sẵn, quả là một bài học phong phú của phương pháp luận.

Chương mới, vì đây là lần đầu xuất hiện một hạt cơ bản duy nhất có spin 0 mang khối lượng cho vạn vật. Các hạt khác đều có spin khác 0: vật chất tượng trưng bởi quark và lepton có spin ½, boson chuẩn (lực nối kết và truyền tải thông tin để cho các viên gạch cơ bản của vật chất tương tác với nhau) có spin 1.

Trường vô hướng Higgs tràn ngập trạng thái chân không của vũ trụ ngay từ thủa sơ khai Big Bang, tương tác đặc biệt của nó với vật chất là ngăn chặn, cản trở để cung cấp khối lượng cho chúng. Càng tương tác mạnh bao nhiêu với trường Higgs, vật chất lại càng được tăng khối lượng bấy nhiêu, tựa như người không biết bơi, càng vùng vẫy mạnh càng nặng thêm mà chìm xuống, càng bất động im hơi càng nổi bềnh bồng. Quan điểm về khối lượng có thể đổi khác từ nay, sự tương tác trao đổi trong chân không lượng tử, một vũ đài náo nhiệt, mới chính là gốc nguồn của khối lượng và năng lượng.

Một câu hỏi để tạm kết: Tuy trường Higgs mang khối lượng cho vạn vật, nhưng cái gì mang lại cho chính boson Higgs cái khối lượng 126 Gev/ c2 mà LHC vừa khám phá ra ? Đừng quên là khoảng 96% năng-khối lượng trong toàn vũ (mệnh danh là năng lượng tối và vật chất tối) hãy còn ở ngoài sự hiểu biết hiện nay của con người.

Một chân trời mới “hậu Mô Hình Chuẩn” đầy triển vọng đang đón chờ đóng góp, giải đáp bởi thế hệ trẻ.

diendan.org(16/07/2012)


1 Máy gia tốc LHC ( Large Hadron Collider) tốn kém khoảng bốn tỷ euros, chu vi 27 km nằm sâu hơn 100 m dưới mặt đất, công xuất điện cung cấp cho LHC hoạt động là 120MW, tương đương với nhu cầu điện của toàn thể quận Genève. Phụ thêm hai máy khổng lồ để dò tìm hạt: CMS dài 21m nặng 12500 t ấn, ATLAS đường kính 25m, nặng 7000 tấn.

2 Nhóm đối xứng giản dị nhất diễn tả bởi hàm eiα(x) là nhóm quay U (1) trong mặt phẳng.

Đi xa hơn, quan sát cách vận hành cũng như tác động giống hệt nhau của hai hạt proton và neutron trong các hạt nhân nguyên tử đưa Heisenberg đến khái niệm nhóm đối xứng SU(2) chi phối chúng.

Murray Gell-Mann nới rộng nhóm SU(2) thành nhóm đối xứng SU(3) giữa 3 vật thể (proton, neutron, hadron Λ) để sắp xếp chúng và xây dựng nên cấu trúc cũng như tính chất của những hạt phức hợp hạ nguyên tử (gọi chung là hadron) mà các nhà thực nghiệm đã tìm thấy từ những năm 1950 mà không ai hiểu tại sao và bản chất chúng là gì. Sự phân loại và sắp xếp trật tự những hadron này bởi Gell-Mann cũng tựa như Mendeleïev trước kia đã làm với các nguyên tố hóa học rối rắm từ hydrogen đến uranium.

Dùng nhóm đối xứng SU(3), ông tiên đoán năm 1962 là tất yếu phải hiện hữu hạt Ω– (khối lượng của hạt này cũng đã được tính toán trước), năm 1964 các nhà vật lý thực nghiệm tìm ra nó ở Brookhaven.

Ngày nay ta hiểu là tất cả các hadron đều chỉ là trạng thái liên kết của các hạt cơ bản quark với nhau hay/và quark với phản quark, đặc biệt Ω– là trạng thái liên kết của 3 quark s. Coi Hình 1 sơ đồ về quark.

3 Tạm kể mấy thành quả kỳ diệu của công nghệ mang đến cho đời sống hàng ngày:

a - Công nghệ thông-truyền-tin với mạng lưới toàn cầu được sáng tạo và dùng đầu tiên bởi các nhà vật lý ở CERN (Centre Européen de Recherche Nucléaire) chuyên về nghiên cứu hạt cơ bản. Ðặt ở biên giới Pháp-Thụy Sĩ gần thành phố Genève với máy gia tốc LHC trong đó công nghệ siêu dẫn của điện từ được tận dụng, tạo nên những từ trường rất mạnh để đẩy những hạt electron, positron, proton cho đạt tới vận tốc gần bằng ánh sáng, nhờ đó mà tìm kiếm các hạt cơ bản cấu tạo nên vạn vật, khám phá thăm dò được bản chất cũng như các định luật tương tác của chúng. Vì hàng ngàn nhà vật lý ngành năng lượng cao này đều sinh hoạt ở nhiều quốc gia tản mát khắp địa cầu không phải lúc nào cũng có thể thường xuyên làm việc bên CERN, để dễ dàng cộng tác và trao đổi rất nhiều dữ liệu, cùng nhau phân tích tổng hợp nhanh chóng các kết quả nghiên cứu, khoảng năm 1990 đã xuất hiện mạng lưới toàn cầu. Chưa đầy mười năm sau, internet đã nhanh chóng tràn ngập thị trường thông-truyền-tin quốc tế mà điển hình là động cơ truy cập Google.

b - Cuộc cách mạng số trong những phương tiện truyền thanh, truyền hình, quay phim, điện thoại v.v. được phát triển nhờ những khám phá về laser và chất bán dẫn mà đại diện là các linh kiện vi tính, vi điện tử, quang điện tử.

c - Hệ thống GPS (Global Positioning System) để xác định tức khắc các địa điểm trên hoàn cầu trang bị các phương tiện vận tải, thông truyền tin. Hệ thống đó tùy thuộc căn bản vào máy đo thời gian vô cùng chính xác (đồng hồ nguyên tử khai thác sự dao động tuần hoàn của các nguyên tử vi mô) được làm ra với mục tiêu khoa học thuần túy để kiểm chứng thuyết tương đối rộng trong vũ trụ học và thiên văn. Theo thuyết này nhịp độ của đồng hồ thay đổi với sức hút của quả đất, trọng lực giảm thì tần số dao động cũng giảm theo, hay thời gian trôi nhanh lên.

d - Công nghệ liên quan đến y tế dùng máy gia tốc của các hạt proton hay electron, laser trong giải phẫu, trị bệnh, máy chụp hình nổi như MRI (magnetic resonance imaging), PET (positron emission tomography) trong đó hạt positron (tức phản electron) được tận dụng để rõi theo sự biến chuyển của tế bào.

e - Hiện tượng siêu dẫn điện-từ ở nhiệt độ thấp (từ sát 0K đến 165 K) là một đặc trưng của vật lý lượng tử. Vật liệu siêu dẫn không có điện trở, điện không bị thất tán nếu truyền tải bằng dây siêu dẫn. Hơn thế nữa, một thanh nam châm để gần một vật liệu siêu dẫn sẽ bị nâng bật ra ngoài, khác với điện từ ở điều kiện bình thường. Với những đặc tính trên và từ trường cực kỳ mạnh duới trạng thái siêu dẫn, có nhiều triển vọng cho công nghiệp của thế kỷ 21, đặc biệt trong sự sản xuất, tích trữ và chuyển vận năng lượng. Một thí dụ là khả năng điều chỉnh được sự tổng hợp nhiệt hạch với lò phản ứng nhiệt hạch quốc tế ITER xây dựng ở Cadarache miền nam nước Pháp. Ngoài ra còn phải kể đến khả năng chủ yếu của siêu dẫn trong các ngành liên quan đến điện tử (với máy tính và dữ kiện dùng vật liệu siêu dẫn), đến sinh học (với thiết bị sensor cực kỳ nhậy bén), đến vận tải (với tàu hỏa tốc hành nâng lên bởi từ trường siêu dẫn, không chạm đường ray nên tàu chạy rất nhanh lại an toàn), đến vật liệu carbon như fullerene C60, vật dẫn điện hữu cơ, đất hiếm.

4 Đơn vị đo lường của spin là ħ = h/2π, h là hằng số Planck. Qua phương trình Dirac, spin ћ/2 của fermion là một đặc trưng độc đáo của vật lý lượng tử. Spin, tựa như xung lượng góc, miêu tả tính chất quay vòng nội tại của các hạt vi mô cơ bản (như con quay xoay chung quanh trục của nó), spin ћ/2 = h/4π nghĩa là hạt phải quay hai vòng (4π) mới trở lại vị trí ban đầu, điều không tưởng trong cơ học cổ điển.

5 Thực ra có sáu người trong ba nhóm độc lập với nhau hầu như đồng thời cùng đề xuất dùng SBS để mang khối lượng cho boson chuẩn (lúc ấy internet chưa có để đưa bài lập tức lên mạng như ngày nay các nhà nghiên cứu thường làm). Nhóm thứ nhất gồm R. Brout và F. Englert xuất bản ngày 31/08/1964, nhóm thứ hai riêng một mình P. Higgs xuất bản ngày 19/10/1964, nhóm thứ ba gồm G. Guralnik, C. Hagen và T. Kibble xuất bản ngày 16/11/1964. Tất cả các bài đều trên tạp chí Phys. Rev. Lett. số 13.

Bài của P. Higgs thực ra được gửi cuối tháng 7 năm 1964 trước cho tạp chí Phys. Lett. ở CERN, nhưng bị từ chối ông bèn gửi sang Phys. Rev. Lett. Người thẩm định bài của Higgs cho Phys. Rev. Lett. chính là Nambu.

Cần nhấn mạnh là chỉ riêng P. Higgs đã đề xuất là phải hiện hữu một hạt cơ bản mang spin 0, để cơ chế BEH này có thể kiểm chứng bởi thực nghiệm. S.Weinberg gọi hạt này là boson Higgs mà CERN vừa tìm thấy dấu vết ngày 04/07/2012.

6 Hạt vi mô có khối lượng M ≠ 0 chỉ có thể tác động trong một khoảng cách R ≠ 0 hữu hạn (M ≠ 0 ↔ R≠ 0 vì hai đại lượng R và M bị kiềm chế bởi nguyên lý bất định Heisenberg R × M ~ ħ). Photon không khối lượng có thể truyền đi vô hạn, M= 0 ↔ R = ∞.

7 John Bardeen được 2 giải Nobel vật lý, năm 1956 về transistor và năm 1972 về siêu dẫn.

8 Mai Ninh, Truyện ngắn “Hạt điện cô đơn”
 
Last edited by a moderator:
Mấy thứ này đọc hơi khó hiểu. Có lẽ do em học vật lý dốt...Để nghiên cứu thêm xem sao...
 
Boson Higgs và Khối lượng !
http://360.thuvienvatly.com/bai-viet/nguyen-tu-hat-nhan/595-ban-biet-gi-ve-boson-higgs

Newton nghĩ rằng ông đã có lực hấp dẫn trong tay khi một quả táo trí tuệ rơi trong đầu ông vào năm 1665. Nhưng 250 năm sau, một thanh niên trẻ tên là Einstein đã công nhiên rằng hấp dẫn không phải là một tính chất của Trái đất hay bất kì vật chất nào khác – hấp dẫn là cái bạn thấy khi vật chất làm biến dạng không-thời gian.

Quan điểm của Einstein thổi lên những luồng gió mới. Và trong khi kiến thức hiện nay của thuyết tương đối rộng là không cần thiết cho một cuộc sống hạnh phúc và trọn vẹn, nhưng nó thiết yếu cho các nhà vật lí mở mang đầu óc của họ xem vũ trụ thật sự hoạt động như thế nào.

Tiến nhanh cho đến bây giờ, và nếu một nhân vật kém nổi tiếng hơn của những năm 1960 là đúng, thì sự nhận thức của chúng ta về khối lượng – mức độ nặng của các vật – là xem xét sự hấp dẫn.

higgs55.jpg

Các nhà khoa học đã phát triển một mô phỏng xem phân hủy của hạt boson Higgs sẽ trông như thế nào. (DESY Zeuthen)

Khối lượng

Khối lượng là một trong những thứ mà cố hữu chúng ta ‘có’ – một số thứ thì nặng hơn những thứ khác, và khối lượng của các vật không thay đổi từ ngày này sang ngày tiếp theo. Chúng ta biết hoặc có thể tính ra khối lượng của mọi thứ trên hành tinh, từ một nguyên tử hydrogen (1,6x10-27 kg) đến một chiếc phản lực (400.000 kg) cho đến bản thân hành tinh (5,6x1024 kg). Và chúng ta biết khối lượng của các vật thật ra là tổng khối lượng của tất cả các nguyên tử cấu tạo nên nó.

Nhưng vào thập niên 1960, nhà vật lí người Anh Peter Higgs đi đến một ý tưởng tách khối lượng ra khỏi cái gì đó hoàn toàn hiển nhiên, thành một cái gì đó mơ màng như bản thân thập niên ’60 vậy.

Ông nói khối lượng không phải là một tính chất của vật chất. Thay vào đó, một trường không nhìn thấy chứa đầy mọi góc cạnh của vũ trụ, và các vật có khối lượng bằng cách tương tác với trường đó. Trường (gọi là trường Higgs) tương tác với một hạt càng mạnh, thì hạt càng nặng.

Các electron thật sự nhẹ, nên trường Higgs khó tương tác với chúng. Các quark cấu tạo nên proton và neutron thì nặng hơn electron nhiều, vì trường Higgs tác dụng lên chúng mạnh hơn nhiều, khiến chúng khó tách rời ra hoặc chuyển động chậm lại. Các photon, những gói năng lượng cấu tạo nên bức xạ điện từ, không có khối lượng. Nên chúng lao qua vũ trụ như thể trường Higgs không hề có mặt – các photon và trường Higgs hoàn toàn ‘phớt lờ’ nhau.

Ý tưởng của Higgs nhận được sự hoan nghênh “xuất sắc!” từ phía đa số các nhà vật lí, và một số người khác thì la toáng lên “gì thế...?” Tại sao ông lại làm phức tạp thêm một khái niệm như khối lượng vốn đã hoạt động khá tốt? Vâng, người ta phải phản ứng như vậy thôi.

lhc55.jpg

Các nhà khoa học hi vọng Máy Va chạm Hadron Lớn sẽ phát hiện ra vết tích của hạt boson Higgs. (Maximilien Brice/CERN)

Một lí thuyết của hầu như mọi thứ

Trong thế kỉ 20, các nhà vật lí lượng tử đã phát hiện và lí thuyết hóa những thứ ngày một kì lạ hơn về thế giới hạ nguyên tử. Vào thập niên 1960, các nhà vật lí đang dồn về với nhau mọi thứ họ biết về các hạt hạ nguyên tử và các tương tác của chúng thành một lí thuyết hoặc mô hình. Đó là một lời kêu gọi lớn, với sự thưởng phạt lớn – mọi thứ cấu tạo từ vật chất, cho nên việc tìm hiểu các hạt cấu tạo nên vật chất và các lực chi phối cái diễn ra ở cấp độ ấy là công việc ưu tiên hàng đầu.

Vào đầu thập niên 1970, mô hình xuất hiện gần như làm được công việc đó. Mô hình Chuẩn của vật lí hạt cơ bản bao quát 12 hạt hạ nguyên tử (bao gồm electron cũng như các quark cấu tạo nên neutron và proton), các phản hạt của chúng, và ba trong số bốn lực chi phối mọi tương tác của chúng. Nó còn tiên đoán các hạt chưa biết vào lúc ấy, nhưng rồi đã được tìm thấy trong các thí nghiệm năng lượng cao. Khi mô hình trên tiến trình hoàn thiện, thì người ta gặp hai trở ngại lớn.

Một trong những trở ngại này là nó không cho phép bất kì hạt nào có khối lượng. Mọi hạt trên thực tế chúng ta biết là có khối lượng – nó đã được đo và chứng minh – nên vật lí học cần một lời giải cho bài toán khối lượng, hay nó cần một mô hình mới. Đó là nơi ngài Higgs của chúng ta và trường lực mang tên ngài xuất hiện.

Nếu trường Higgs thật sự là cơ sở của khối lượng, thì thật OK cho bản thân các hạt hạ nguyên tử không có khối lượng vì chúng cần đến nó chỉ bởi việc tương tác với trường, và Mô hình Chuẩn vẫn trụ vững. Nhưng nếu rốt cuộc không có trường Higgs, thì chúng ta chẳng có cách nào giải thích khối lượng và vật lí hạt sơ cấp sẽ ở lại với Mô hình rất Dưới chuẩn.

Vậy làm thế nào bạn tìm ra một trường không nhìn thấy chiếm giữ mọi góc cạnh không gian trong vũ trụ? Bạn hãy săn tìm boson của nó.

Săn tìm boson Higgs


Trong vật lí lượng tử, các trường (như trường điện từ và trường hấp dẫn) được trung chuyển hoặc mang bởi các hạt gọi là boson. Một trường thật ra là một biển gồm các boson ảo thoắt ẩn thoắt hiện. Boson được biết tới nhiều nhất là photon, hạt trung chuyển trường điện từ. Và nếu trường Higgs lan tỏa mọi nơi thật sự tồn tại, thì nó sẽ được trung chuyển bởi boson Higgs.

Tìm kiếm boson Higgs đòi hỏi một chút thủ thuật. Giống như đa số các hạt hạ nguyên tử, nó không bền, và chỉ tồn tại ở các năng lượng cao. Thật sự là những năng lượng cao. Loại năng lượng bạn có ngay sau Big Bang, hoặc khi bạn chó các hạt hạ nguyên tử lao vào nhau ở tốc độ gần như bằng ánh sáng.

Đó chính là cái đang diễn ra trong Máy Va chạm Hadron Lớn của châu Âu. Nếu các proton siêu nhanh (một loại hadron) lao vào nhau với năng lượng đủ lớn, thì một boson Higgs có thể hình thành. Những nhân vật này được bảo quản cao đến mức cho dù một hạt thật sự xuất hiện thì nó sẽ không bền và sẽ biến mất trở lại ngay tức thì. Nhưng nó sẽ tạo ra một vết tích mách bảo của sự sinh và hủy sẽ để lại tín hiệu cho các nhà vật lí biết rằng boson Higgs chẳng phải chỉ là một tên gọi vui cho một nhân vật người Anh.

Còn nếu sau hàng tỉ đô la đã chi ra mà chúng ta chẳng tóm được boson Higgs thì sao? Cộng đồng vật lí hạt sẽ chưa thất vọng đâu. Đó sẽ là gợi ý cho họ đi đến một mô hình hoạt động tốt như mô hình hiện nay của chúng ta, nhưng có chỗ cho khối lượng, năng lượng tối, vật chất tối và một cái nho nhỏ gọi là sự hấp dẫn.
 
Last edited by a moderator:
(tiếp) Ngoài ra, hai định luật cơ bản điện từ và hạt nhân yếu tuy có cường độ tương tác hiệu dụng quá khác biệt nhưng vì nhận thấy chúng có nhiều đặc tính chung nên S. Glashow, A.Salam và S. Weinberg (giải Nobel 1979) sử dụng cơ chế BEH để kết hợp lực điện từ và lực hạt nhân yếu trong một tương tác duy nhất mà Salam đặt tên là điện-yếu (electroweak). Thành tựu tuyệt vời này gọi là Mô Hình Chuẩn (Standard Model) đã mang lại khoảng ba chục giải Nobel trong ba chục năm gần đây. Mô Hình Chuẩn tiên đoán nhiều hiện tượng và hạt mới lạ cũng như tính chất của chúng mà sau đó đều được thực nghiệm kiểm chứng với độ chính xác đáng kinh ngạc. Hãy tạm kể hạt Ω–, dòng trung tính của lực hạt nhân yếu, các quark charm, top, bottom, hai boson chuẩn W, Z, mới lạ hồi hộp nhất là hạt cơ bản vô hướng Higgs vừa phát hiện.

clip_image002.jpg

Hình1: Sơ đồ các hạt cơ bản trong Mô Hình Chuẩn

Ở trung tâm của Hình1, duy nhất boson Higgs mang màu xám nhạt như để nhắc nhở là hạt này tuy là nền tảng lý thuyết của Mô hình chuẩn nhưng lại chưa được thực nghiệm khẳng định, khác với màu hồng, xanh, tím của quark, lepton, boson chuẩn (Z, W, γ, g) đã được thực nghiệm xác nhận là hiện hữu. Rất có thể kể từ ngày mồng 4 tháng 7 năm 2012, màu xám của hạt Higgs sẽ rực rỡ ánh vàng vì hai nhóm thực nghiệm ATLAS và CMS ở CERN vừa tìm ra dấu vết nó trong máy gia tốc LHC.

3- Sự phá vỡ tự phát của tính đối xứng

Ta cần phân biệt hai điều quan trọng khi bàn luận về tính đối xứng: một là định luật vật lý diễn tả bởi phương trình, hai là trạng thái của hệ thống vật lý diễn tả bởi nghiệm số của phương trình trên. Sự phá vỡ tự phát của tính đối xứng hàm nghĩa là định luật (hay phương trình) cơ bản mang một phép đối xứng nào đó, trong khi nghiệm số của phương trình ấy lại không có cái đối xứng nguyên thủy, tính đối xứng của hệ thống bị biến đổi và thu hẹp lại nhưng không mất đi.

Hãy lấy thí dụ cụ thể về định luật vạn vật hấp dẫn cổ điển Newton áp dụng vào hệ thống Mặt trời và Trái đất để minh hoạ. Định luật hấp dẫn tuân thủ phép đối xứng quay trong không gian ba chiều với bất kỳ một góc nào chung quanh Mặt trời, luật đó bảo cho ta là quỹ đạo hình bầu dục của Trái đất có thể nằm trong bất kỳ một mặt phẳng xích đạo nào của quả cầu có tâm là Mặt trời. Nhưng hệ thống Mặt trời và Trái đất, nghĩa là nghiệm số của phương trình hấp dẫn, chỉ chọn một quỹ đạo duy nhất trong muôn vàn quỹ đạo có thể.

Định luật thì có đối xứng quay trong không gian ba chiều của hình cầu, trong khi trạng thái thì chỉ có đối xứng quay bị thu hẹp lại trong không gian hai chiều của mặt phẳng. Nằm trên quỹ đạo phẳng đó ta có thể nhầm tưởng là tính đối xứng quay nói trên bị phá vỡ, nhưng thực ra không thế, nó chỉ bị che khuất trong mặt phẳng.

Tìm ra phương trình là một chuyện, nhưng giải phương trình để có nghiệm số thỏa mãn điều kiện ban đầu nào đó lại là một chuyện khác. Ở đây ta giới hạn điều kiện ban đầu là năng lượng cực tiểu và nghiệm số tương ứng gọi là trạng thái căn bản hay chân không. Do vật chất (và năng lượng) được đặt vào chân không nên mọi sự trở nên đa dạng, phức tạp trong vũ trụ. Vì được coi là trạng thái đối xứng hoàn hảo nhất, nó bất biến bởi mọi chuyển đổi và do đó ta có thể nghĩ rằng chỉ có duy nhất một chân không (nơi vật chất vắng mặt). Nhưng có nhiều trường hợp không phải như vậy, có thể có muôn vàn trạng thái căn bản tương đương nhau, chẳng sao phân biệt, ta phải chọn cụ thể một trạng thái nhất định nào đó để xác định chân không. Tính đối xứng không bị phá vỡ trong toàn thể, nhưng về cục bộ thì nó bị che khuất trong chân không, đó là SBS minh họa bởi Hình 2.

07.JPG

Hình 2: Minh họa hiện tượng SBS: Thế giới hoàn toàn đối xứng chung quanh trục thẳng đứng, khi cậu nhỏ nhìn từ đỉnh cao chót (nhưng bấp bênh) của nón. Sàn dưới (trạng thái căn bản) vững chắc nhưng nghiêng xa trục thẳng đứng, đối xứng vẫn còn nhưng chỉ cục bộ đâu đó trong vìa nón thôi.

Hiện tượng SBS khá phổ biến trong vật lý mà vật liệu sắt-từ (kim loại sắt hay kền) là một thí dụ. Định luật cơ bản chi phối chất sắt-từ thì hoàn toàn đối xứng trong sự phân phối spin (coi như những la bàn nhỏ xíu) của các nguyên tử kền. Spin song song của chúng không có một chiều hướng nào giữ ưu thế trong toàn thể không gian ba chiều. Nhưng trong một thỏi nam châm của vật liệu sắt-từ, nghĩa là trong trạng thái căn bản của các nguyên tử kền, thì chiều spin song song của các nguyên tử này lại chỉ có một chiều nhất định bắc nam thôi, vậy trạng thái đó chỉ còn có một đối xứng thu hẹp trong mặt phẳng hai chiều.

Cũng vậy, siêu dẫn điện-từ minh họa hiện tượng SBS. Tính siêu dẫn của một số vật liệu ở nhiệt độ thấp là một đặc trưng của vật lý lượng tử, nó không có điện trở, vì thế nó trục xuất bất kỳ một điện trường lớn nhỏ ở ngoài áp đặt vào nó. Hơn nữa, để gần vật liệu siêu dẫn thì thỏi nam châm bị đẩy ra ngoài, từ trường bị trục xuất ra khỏi vật liệu siêu dẫn, đó là hiệu ứng Meissner- Ochsenfeld. Hiệu ứng này có thể là cội nguồn cho xe lửa trong tương lai được nâng lên trên đường ray, không bị lực ma sát nên xe lửa chạy nhanh (phụ chú 3e). Như vậy vật liệu siêu dẫn ngăn chặn tầm truyền của trường điện từ, nó là một hệ thống trong đó photon chỉ có thể tác động trong một khoảng cách ngắn, khác với bản chất tự tại của sóng điện từ có thể truyền đi vô hạn. Khi chuyển động trong vật liệu siêu dẫn thì photon, boson chuẩn của điện từ, bị cản trở bởi một bức tường chắn và như vậy photon tác động giống như mang một khối lượng6, mặc dầu phương trình điện từ Maxwell của nó vẫn tuân theo đối xứng chuẩn.

Bức tường chắn đó trong lý thuyết siêu dẫn của J. Bardeen7, L. N. Cooper và J. R. Schrieffer (BCS), giải Nobel 1972, là trạng thái căn bản của muôn ngàn cặp Cooper, cặp liên kết hai electron có spin đối nghịch và như vậy cặp này mang spin 0. Mỗi cặp Cooper mang điện tích -2e nhưng vì có spin 0 nên những cặp này có thể hoà đồng chung sống tựa như một đông tụ Bose-Einstein. Mỗi electron thì cô đơn8 và có cá tính mạnh mẽ, nhưng kỳ lạ thay ở một hoàn cảnh đặc biệt nào đó (nhiệt độ thấp) chúng lại dễ kết cặp với nhau, mỗi cặp tuy mảnh mai nhưng khi tụ họp đông đảo lại hòa đồng để vận hành như một dòng chảy thuần khiết của muôn ngàn điện tích và trở nên siêu dẫn.

Mặc dù photon có khối lượng khác 0, đối xứng chuẩn trong siêu dẫn điện từ không hề bị phá vỡ, nó chỉ bị che khuất đi bởi các cặp Cooper ở trạng thái căn bản, hiện tượng siêu dẫn là một biểu hiện sự phá vỡ tự phát của tính đối xứng chuẩn.

Sắt-từ, Siêu dẫn điện từ là hai thí dụ của SBS.

Hiện tượng SBS giúp ta hiểu tại sao boson chuẩn photon, trên nguyên tắc phải không có khối lượng, cuối cùng lại hóa ra có khối lượng trong hiện tượng siêu dẫn. Nó quả là một diệu pháp khiến cho hai boson chuẩn không khối lượng của lực yếu W, Z dựa vào để có khối lượng.

Nhưng mang khối lượng cho boson chuẩn chưa đủ, hãy còn một vướng mắc cuối phải vượt qua để cho cơ chế BEH được nhất quán và chính xác trên nguyên tắc. Thực thế, một định lý do J. Goldstone khám phá ra, theo đó thì hậu quả tất yếu của SBS là phải xuất hiện một hạt không khối lượng, không spin, được gọi là boson Nambu–Goldstone (NG). Ta có thể cảm nhận bằng trực giác định lý Goldstone khi quan sát cậu nhỏ trên vành nón. Cậu chẳng cần mất một chút năng lượng nào mà vẫn có thể di chuyển dễ dàng suốt quanh vành nón vì bất kỳ trạng thái căn bản nào trên vành nón cũng đều giống hệt nhau. Không cần một chút năng lượng nào để biến chuyển thì cũng tựa như dựa vào tác động của một hạt nhạt phèo, không khối lượng, không spin, đó chính là boson NG mà thực nghiệm có thể dễ dàng phát hiện, nếu có thật. Nhưng phiền toái thay, chẳng ai thấy bóng vía của boson NG hiện ra bao giờ cả, nó thực là một di sản cồng kềnh của SBS cần phải loại bỏ.

P. Higgs và đồng nghiệp đã thành công trong cách chứng minh được sự triệt tiêu này. Ta có thể tóm tắt nôm na là họ đạt hai đích với một mũi tên qua hình ảnh boson chuẩn khởi đầu nhẹ tênh (không khối lượng) đã nuốt chửng boson NG để cuối cùng trở thành W, Z nặng nề của lực yếu. Không những mang khối lượng cho W, Z, trường Higgs cũng mang khối lượng cho quark và lepton với đặc điểm là khối lượng của chúng tỷ lệ thuận với lực tương tác với boson Higgs. Quark top tác động mạnh mẽ nhất, neutrino hay electron lại quá hững hờ, còn photon thì hoàn toàn vô cảm với trường Higgs.

Thế chứ, đạo sỹ nano bây giờ mới có quán xịn để phát huy. Dưng cái mô hình vũ trụ thì đây cũng chỉ là giả thiết, bởi có rất nhìeu dạng thỏa mãn về spin mà không nhất thiết là hình mũ mehicô. Ví dụ hình xuyến. Trong một trường lực mạnh, hình xuyến là một dạng không gian khép kín bị biến dạng bởi trường lực mà mọi vật thể trong đó chuyển động trong cái ống tạo nên bởi trường lực, hệt như cấu trúc của LHC, người ta khó có thể hình dung đâu là đầu đâu là cuối của xuyến, do vậy theo thuyết tương đối, người quan sát bị ảo giác vô tận.

Rất cảm ơn bác về cái flash so sánh các kích thước từ các hạt cơ bản đến các thiên thể. Hôm nào đại sư nano quán tưởng "du lịch xuyên không gian" đến Centauri B đê, hay ho ra phết!
 
1 Máy gia tốc LHC ( Large Hadron Collider) tốn kém khoảng bốn tỷ euros, chu vi 27 km nằm sâu hơn 100 m dưới mặt đất, công xuất điện cung cấp cho LHC hoạt động là 120MW, tương đương với nhu cầu điện của toàn thể quận Genève. Phụ thêm hai máy khổng lồ để dò tìm hạt: CMS dài 21m nặng 12500 t ấn, ATLAS đường kính 25m, nặng 7000 tấn.

QUy luật vũ trụ không biết có tìm ra không, nhưng cái máy này..có thể tạo lỗ đen vũ trụ..kết quả là trái đất biến mất hiiiiiiiii

+ khi phi hành gia nổi trong không trung, tức là trạng thái không trọng lực. ta đã biết ngay trọng lực chẳng qua là một tác dụng lực hấp dẫn theo chiều hướng tâm trái đất, hay khối lượng chẳng qua chỉ là lực.
+ trong chân không vũ trụ không có lực nào, do vậy vật chất không có khối lượng
+ việc tìm ra bản chất khối lượng, chẳng qua là tìm bản chất tác dụng lực của trái đất & vạn vật thông qua hạt nào
 
Thật tuyệt vời...Khí cánh cửa bí ấn của tự nhiên đang được mở dần. Đầy kỳ lạ và hấp dẫn !
Từ Trọng lực rồi đến khối lượng đều không phải là thuộc tính của vật chất và do tương tác giữa chúng...!!!

Đến khúc này, chợt quay lại các khái niệm, sẽ là: vật chất có dạng hạt sáng, hạt tối..tồn tại theo các đám mây ....trường..ý thức thì thường ở dạng hạt sáng..trường hạt sáng....hình như "vật chất, ý thức" theo duy vật..thực ra hai mà một. ý thức thực ra cũng giống như 01 program vận động, có thể trên trường vật chất sáng, hay tối. một dạng tiểu quy luật, trong các quy luật vũ trụ. nói chính xác thì vật chất, ý thức tồn tại song song. bởi vật chất nào cũng vận hành theo 1 quy luật nhất định

bắt đầu confuse điên đảo rùi hiiiiiii
 
+ khi phi hành gia nổi trong không trung, tức là trạng thái không trọng lực. ta đã biết ngay trọng lực chẳng qua là một tác dụng lực hấp dẫn theo chiều hướng tâm trái đất, hay khối lượng chẳng qua chỉ là lực.

Trọng lượng và khối lượng là 2 cái khác nhau: Trọng lượng đặc trưng cho tương tác, khối lương đặc trưng cho quán tính.

+ trong chân không vũ trụ không có lực nào, do vậy vật chất không có khối lượng

Trong khoảng không vũ trụ thì khối lượng Vật thể vẫn giữ nguyên chứ không phải không có khối lượng đâu ạ...:))

+ việc tìm ra bản chất khối lượng, chẳng qua là tìm bản chất tác dụng lực của trái đất & vạn vật thông qua hạt nào

Sợ cụ thật !

Việc tìm ra bản chất khối lượng, "chẳng qua" là tìm tận gốc cái sinh ra Năng lương vì E =m.C^2...:))
 
...............

Trọng lượng và khối lượng là 2 cái khác nhau: Trọng lượng đặc trưng cho tương tác, khối lương đặc trưng cho quán tính.
cái này là bác mang khái niệm cũ ra nói hiiiiiii, khối lượng đo như thế nào...là đặt trên cân, và đo lực đó thui. khối lượng là 01 lực hướng tâm vậy thôi
trong vũ trụ, không đo được khối lượng. mặc dù mảng vật chất đó (01 cục sắt, 01 cục sốp vẫn ở đó), như vậy mảng vật chất đó chẳng qua hai đám mây "hạt nhân" to nhỏ đậm đặc khác nhau mà thôi. vì vậy khối lượng là 01 khái niệm vật lý cổ
Việc tìm ra bản chất khối lượng, "chẳng qua" là tìm tận gốc cái sinh ra Năng lương vì E =m.C^2..
đoạn này cụ lại confuse.
+ năng lượng là do va chạm các hạt, các tác động qua lại khi va trạm
+ còn cái "lực" bàn ở đây là bàn cái tĩnh lực, ví dụ cái hạt higg kia nó tương tác với các hạt photon...như thế nào, để tạo ra hữu tính, như kiểu cực dương nam trâm, và bị cực âm trong lòng trái đất nó hút mạnh yếu, mà tạo ra 01 lực mạnh yếu, thể hiện các khối lượng khác nhau
Năng lương vì E =m.C^2..
m: khối lượng chuyển hoá 100% thành năng lượng , C=vận tốc AS
tuy công thức là vậy, nhưng các phản ứng hạt nhân bi giờ cũng chua đạt được, m tồn dư còn khá lớn, m thất thoát nhỏ
 
Last edited by a moderator:
cái này là bác mang khái niệm cũ ra nói hiiiiiii, khối lượng đo như thế nào...là đặt trên cân, và đo lực đó thui. khối lượng là 01 lực hướng tâm vậy thôi
trong vũ trụ, không đo được khối lượng. mặc dù mảng vật chất đó (01 cục sắt, 01 cục sốp vẫn ở đó), như vậy mảng vật chất đó chẳng qua hai đám mây "hạt nhân" to nhỏ đậm đặc khác nhau mà thôi. vì vậy khối lượng là 01 khái niệm vật lý cổ

@Thiet

Khối lượng là một khái niệm khá trừu tượng. Để hiểu nó thấu đáo sẽ mất khá nhiều thời gian đấy !
Người ta đo Khối lượng bằng cách so sánh với 1kg tiêu chuẩn (dùng cân bàn), Còn đo khối lượng bằng lực lò xo (trọng lực) thì chỉ là đo gần đúng thôi !
Trong vũ trụ thì các vật lơ lửng vì nó KHÔNG TRỌNG LƯƠNG, còn KHỐI LƯỢNG VẪN GIỮ NGUYÊN.
 
Thế chứ, đạo sỹ nano bây giờ mới có quán xịn để phát huy. Dưng cái mô hình vũ trụ thì đây cũng chỉ là giả thiết, bởi có rất nhìeu dạng thỏa mãn về spin mà không nhất thiết là hình mũ mehicô. Ví dụ hình xuyến. Trong một trường lực mạnh, hình xuyến là một dạng không gian khép kín bị biến dạng bởi trường lực mà mọi vật thể trong đó chuyển động trong cái ống tạo nên bởi trường lực, hệt như cấu trúc của LHC, người ta khó có thể hình dung đâu là đầu đâu là cuối của xuyến, do vậy theo thuyết tương đối, người quan sát bị ảo giác vô tận.

Rất cảm ơn bác về cái flash so sánh các kích thước từ các hạt cơ bản đến các thiên thể. Hôm nào đại sư nano quán tưởng "du lịch xuyên không gian" đến Centauri B đê, hay ho ra phết!

Đại ca, có lĩnh vực nào mà đại ca không biết không?
 
Thế chứ, đạo sỹ nano bây giờ mới có quán xịn để phát huy. Dưng cái mô hình vũ trụ thì đây cũng chỉ là giả thiết, bởi có rất nhìeu dạng thỏa mãn về spin mà không nhất thiết là hình mũ mehicô. Ví dụ hình xuyến. Trong một trường lực mạnh, hình xuyến là một dạng không gian khép kín bị biến dạng bởi trường lực mà mọi vật thể trong đó chuyển động trong cái ống tạo nên bởi trường lực, hệt như cấu trúc của LHC, người ta khó có thể hình dung đâu là đầu đâu là cuối của xuyến, do vậy theo thuyết tương đối, người quan sát bị ảo giác vô tận.

Rất cảm ơn bác về cái flash so sánh các kích thước từ các hạt cơ bản đến các thiên thể. Hôm nào đại sư nano quán tưởng "du lịch xuyên không gian" đến Centauri B đê, hay ho ra phết!

Thật tuyệt vời...Khí cánh cửa bí ấn của tự nhiên đang được mở dần. Đầy kỳ lạ và hấp dẫn !
Từ Trọng lực rồi đến khối lượng đều không phải là thuộc tính của vật chất mà do tương tác giữa chúng...!

Ảo giác theo thuyết tương đối là do người quan sát và hiện tượng ở 2 hệ quy chiếu khác nhau. Nên chỉ cần sensor và hiện tượng cùng trong một hệ quy chiếu là ổn rùi !
 
@Thiet

Khối lượng là một khái niệm khá trừu tượng. Để hiểu nó thấu đáo sẽ mất khá nhiều thời gian đấy !
Người ta đo Khối lượng bằng cách so sánh với 1kg tiêu chuẩn (dùng cân bàn), Còn đo khối lượng bằng lực lò xo (trọng lực) thì chỉ là đo gần đúng thôi !
Trong vũ trụ thì các vật lơ lửng vì nó KHÔNG TRỌNG LƯƠNG, còn KHỐI LƯỢNG VẪN GIỮ NGUYÊN.

Wah! anh WW típ nhé, đọc hay wa.

Em xin bổ sung tí cơ bản chắc mọi người ai cũng rành về khối lượng & trọng lượng rùi,

Khối lượng là đại lượng đặc trưng cho bản thân vật chất được tính từ số phần tử vật chất (n, Proton, Notron, Electron) có ký hiệu là m, đơn vị tính là kG, thứ nguyên của nó là khối lượng.

Trọng lượng là đại lượng đặc trưng cho tác động của vật chất, tác dụng bên ngoài lên vật đó (ở đây ta thường xét các vật có khối lượng lớn như trái đấi, từ trường, điện trường, mặt trăng..) trong vật lí đại học có công thức tính lực hấp đãn, lực từ trường. Nó có ký hiệu là P, đơn vị tính là kN và thứ nguyên là lực.
 
Khối lượng và Trọng lượng là 2 từ rất hay nhầm lẫn.

*Weight (trọng lượng), thì Weight lúc này phụ thuộc vào Mass và trọng lực (gravity):
w= mg
Chính vì vậy trọng lực của bạn khác nhau ở mặt trăng và trái đất.


*Mass (khối lượng:m) là khối vật chất của vật.
[Mass is the amount of material in an object]

Để tiện cho việc tính toán người ta có đơn vị cho khối lượng kg, pound....

[theo định nghĩa 1kg là gì thì khá phức tạp, nếu bạn thích thì bạn có thể tìm hiểu thêm.]

Khi bạn nói bạn nặng 54 kg chính là nói đến khối lượng (m) của bạn.

______________________________________…

Khối lượng ko phụ thuộc vào lực tác động lên nó. Vì vậy khối vật chất của bạn thì dù ở mặt trăng, hay ở trong "môi trường chân không" hay ở trái đất thì đều không thay đổi. Vậy nếu vật đó ngoài không gian, cách đơn giản nhất mang về trái đất là biết ngay khối lượng của nó.



___________________________________

Còn nếu vật đó to lớn, ví dụ 1 hành tinh thì người ta xác định khối lượng của nó bằng cách đo lực hấp dẫn của nó lên vật thể gần nhất.
Như bạn đã biết 2 vật có khối lượng M1 và M2 sẽ tạo ra 1 lực hấp dẫn lên nhau theo công thức: F = G * M1 * M2 / R2

G= 6.67259x10^(-11) m3/s2 kg

Ví dụ: xác định khối lượng của quả đất.
1 vật M1 nặng 1kg,
F:( lực hấp dẫn) 9.81 m/s2
Bán kính trái đất R2: 6 400 000 m

Vậy M2 có thể tính được khoảng: 5.9736×10^24 kg

Thực ra các bác bị giới hạn bởi con mắt khoa học truyền thống, lòng không chịu open. theo giải thích ở trên thì W(trọng lượng)=m(khối lượng)*G (ở trái đất là 10m/s)
như vậy ở trạng thái chân không, thì G=0, w=0 & chỉ tồn tại một cái theo cổ điển gọi là khối lượng,

nhưng từ thí nghiệm của Higg, tôi muốn đề cập là nếu ta tác động phá vỡ trạng thái tương tác giữa hạt Higg & một hạt nào đó...chẳng hạn xác định là photon, hay noton....thì vẫn là khối vật chất ấy mà khối lượng đo bằng không. vì ta làm mất một tính đối lập với trái đất chẳng hạn, làm mất lực hấp dẫn
 
Người ta đo Khối lượng bằng cách so sánh với 1kg tiêu chuẩn (dùng cân bàn)

Bác đo cân bàn là dùng phương pháp so sánh vật thui, chứ hai vật treo hai móc...nặng nhẹ hơn kém, đều phải có lực hấp dẫn, tạo trọng lực g (*W=mg; trọng lượng=trọng lực*khối lượng)
 
Em xin bổ sung tí cơ bản chắc mọi người ai cũng rành về khối lượng & trọng lượng rùi,

Khối lượng là đại lượng đặc trưng cho bản thân vật chất được tính từ số phần tử vật chất (n, Proton, Notron, Electron) có ký hiệu là m, đơn vị tính là kG, thứ nguyên của nó là khối lượng.

Bàn về boson higgs và trường higgs nghĩa là đang bàn về khối lượng, muốn hiểu khối lượng sâu hơn những cái đã học ở trường thì đọc lại từ đầu cái thread này thui !

Trọng lượng là đại lượng đặc trưng cho tác động của vật chất, tác dụng bên ngoài lên vật đó (ở đây ta thường xét các vật có khối lượng lớn như trái đấi, từ trường, điện trường, mặt trăng..) trong vật lí đại học có công thức tính lực hấp đãn, lực từ trường. Nó có ký hiệu là P, đơn vị tính là kN và thứ nguyên là lực.

Tương tác hấp dẫn tồn tại là do tương tác giữa của 2 vật thể có khối lượng (Newton) hoặc do sự biến dạng của không-thời gian (Einstein) hoặc do Trường hấp dẫn (hạt graviton) theo Mô hình chuẩn (Higgs).
 
Back
Top